Cryptography and Network Security Chapter 9

Fifth Edition
by William Stallings
Lecture slides by Lawrie Brown
(with edits by RHB)

Outline

- will consider:
 - principles of public-key cryptography
 - RSA algorithm, implementation, security

Chapter 9 – Public Key Cryptography and RSA

Every Egyptian received two names, which were known respectively as the true name and the good name, or the great name and the little name; and while the good or little name was made public, the true or great name appears to have been carefully concealed.

—The Golden Bough, Sir James George Frazer

Private-Key Cryptography

- traditional private/secret/single key cryptography uses one key
- shared by both sender and receiver
- if this key is disclosed communications are compromised
- also is **symmetric**, parties are equal
- hence does not protect sender from receiver forging a message and claiming it's sent by sender (repudiation problem)

Public-Key Cryptography

- probably most significant advance in the 3000 year history of cryptography
- uses two keys a public & a private key
- asymmetric since parties are not equal
- uses clever application of number theoretic concepts to function
- complements rather than replaces private key cryptography (efficiency reasons)

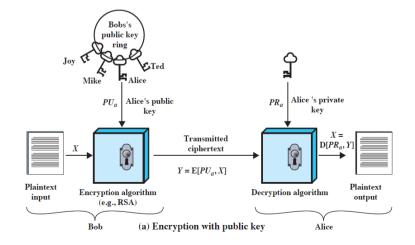
Public-Key Cryptography

- public-key/two-key/asymmetric cryptography involves the use of two keys:
 - a public-key, which may be known by anybody, and can be used to encrypt messages, and verify signatures
 - a related private-key, known only to the recipient, used to decrypt messages, and sign (create) signatures
- infeasible to determine private key from public (requires solving a hard problem)
- is asymmetric because
 - those who encrypt messages or verify signatures <u>cannot</u> decrypt messages or create signatures

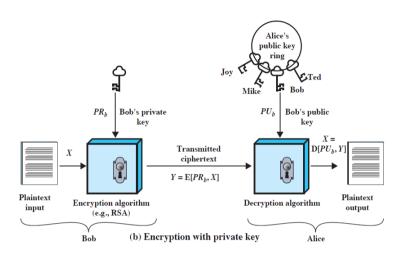
Why Public-Key Cryptography?

- developed to address two key issues:
 - key distribution how to have secure communications in general without having to trust a KDC with your key
 - digital signatures how to verify a message comes intact from the claimed sender
- public invention due to Whitfield Diffie & Martin Hellman at Stanford Uni in 1976
 - known earlier in classified community (NSA (60's (claimed)), CESG (1970 (documented)))

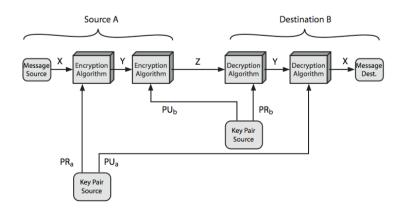
Public-Key Cryptography



Public-Key Cryptography



Public-Key Cryptosystems



Combining secrecy and authentication

Symmetric vs Public-Key

Conventional Encryption	Public-Key Encryption Needed to Work:		
Needed to Work:			
The same algorithm with the same key is used for encryption and decryption.	One algorithm is used for encryption and decryption with a pair of keys, one for encryption and one for decryption.		
The sender and receiver must share the			
algorithm and the key.	The sender and receiver must each have one of the matched pair of keys (not the		
Needed for Security:	same one).		
1. The key must be kept secret.	Needed for Security:		
It must be impossible or at least impractical to decipher a message if no	One of the two keys must be kept secret.		
other information is available.	It must be impossible or at least impractical to decipher a message if no		
 Knowledge of the algorithm plus samples of ciphertext must be 	other information is available.		
insufficient to determine the key.	 Knowledge of the algorithm plus one of the keys plus samples of ciphertext must be insufficient to determine the other key. 		

Public-Key Applications

- can classify uses into 3 categories:
 - encryption/decryption (provide secrecy)
 - digital signatures (provide authentication)
 - key exchange (of session keys)
- some algorithms are suitable for all uses, others are specific to one

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange
RSA	Yes	Yes	Yes
Elliptic Curve	Yes	Yes	Yes
Diffie-Hellman	No	No	Yes
DSS	No	Yes	No

Public-Key Requirements

- Public-Key algorithms rely on two keys where:
 - it is computationally infeasible to find decryption key knowing only algorithm & encryption key
 - it is computationally easy to en/decrypt messages when the relevant (en/decrypt) key is known
 - either of the two related keys can be used for encryption, with the other used for decryption (for some algorithms)
- these are formidable requirements which only a few algorithms have satisfied

Security of Public Key Schemes

- like private key schemes brute force exhaustive search attack is always theoretically possible
- but keys used are too large ... >512bits (PK schemes are generic and superpolynomial ... can always choose a bigger instance, unlike block ciphers)
- security relies on a large enough difference in difficulty between easy (en/decrypt) and hard (cryptanalyse) problems
- more generally the hard problem is 'known', but is made hard enough to be impractical to break
- requires the use of very large numbers
- hence is slow compared to private key schemes

Public-Key Requirements

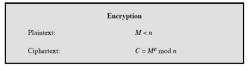
- need a trapdoor one-way function
- one-way function has
 - -Y = f(X) easy
 - $-X = f^{-1}(Y)$ infeasible
- a trap-door one-way function has
 - $Y = f_k(X)$ easy, if k and X are known
 - $-X = f_k^{-1}(Y)$ easy, if k and Y are known
 - $-X = f_k^{-1}(Y)$ infeasible, if Y known but k not known
- a practical public-key scheme depends on a suitable trap-door one-way function

RSA

- by Rivest, Shamir & Adleman of MIT in 1977
- best known & widely used public-key scheme
- based on exponentiation in a finite (Galois) field over integers modulo a prime
 - nb. exponentiation takes O((log n)³) operations (easy)
- uses large integers (eg. 1024 bits)
- security due to cost of factoring large numbers
 - nb. factorization takes O(e log n log log n) operations (superpolynomial, hard)

RSA En/decryption

- to encrypt a message M the sender:
 - obtains public key of recipient PU = {e, n}
 - -computes: $C = M^e \mod n$, where $0 \le M < n$
- to decrypt the ciphertext C the owner:
 - uses their private key PR = {d, n}
 - computes: M = Cd mod n
- note that the message M must be smaller than the modulus n (block if needed)



 $\begin{array}{ccc} & \textbf{Decryption} \\ \\ \text{Ciphertext:} & C \\ \\ \text{Plaintext:} & \textbf{\textit{M}} = \textbf{\textit{C}}^d \bmod n \end{array}$

Figure 9.5 The RSA Algorithm

RSA Key Setup

- each user generates a public/private key pair by:
- selecting two large primes at random: p, q
- computing their system modulus n = p.q
 note Ø(n) = (p-1) (q-1)
- selecting at random the encryption key e
 where 1 < e < Ø(n), gcd(e,Ø(n)) = 1
- solve following equation to find decryption key $d e \cdot d = 1 \mod \emptyset$ (n) and $0 \le d \le n$
- publish their public encryption key: PU = {e, n}
- keep secret private decryption key: PR = {d, n}

Why RSA Works

- because of Euler's Theorem:
 - $a^{\emptyset(n)} \mod n = 1$ where GCD (a, n) = 1
- in RSA have:
 - -n = p.q $- \emptyset(n) = (p-1)(q-1)$
 - carefully chose e and d to be inverses mod ø(n)
 - hence $e.d = 1 + k.\varnothing$ (n) for some k
- hence:

$$C^{d} = M^{e \cdot d} = M^{1+k \cdot \varnothing(n)} = M^{1} \cdot (M^{\varnothing(n)})^{k}$$

= $M^{1} \cdot (1)^{k} = M^{1} = M \mod n$

(provided M and n coprime (still OK if not))

RSA Example - Key Setup

- 1. Select primes: p = 17; q = 11
- **2.** Calculate $n = pq = 17 \times 11 = 187$
- 3. Calculate \emptyset (n) = (p-1) (q-1) = 16x10 = 160
- 4. Select e: GCD(e, 160) = 1; choose e = 7
- 5. Derive d: de = 1 mod 160 and d < 160 Get d = 23 since 23x7 = 161 = 10x160+1
- 6. Publish public key: $PU = \{7, 187\}$
- 7. Keep private key secret: $PR = \{23, 187\}$

Exponentiation

- · can use the Square and Multiply Algorithm
- a fast, efficient algorithm for exponentiation
- · concept is based on repeatedly squaring base
- and multiplying in the ones that are needed to compute the result
- · look at binary representation of exponent
- only takes O(log₂ n) multiples for number n

- eg.
$$7^5 = 7^4$$
. $7^1 = 3$. $7 = 10 \mod 11$
- eg. $3^{129} = 3^{128}$. $3^1 = 5$. $3 = 4 \mod 11$

RSA Example - En/Decryption

- sample RSA encryption/decryption is:
- given message M = 88 (nb. 88 < 187)
- encryption:

```
C = 88^7 \mod 187 = 11
```

• decryption:

```
M = 11^{23} \mod 187 = 88
```

Exponentiation

Computing ab mod n

```
f = 1
for i = k downto 0
do f = (f \times f) \mod n
if b_i == 1 then
f = (f \times a) \mod n
```

return f

Here, integer b is the bitstring $b_k b_{k-1} ... b_0$

Efficient Encryption

- encryption uses exponentiation to power e
- hence if e small, this will be faster
 - often choose $e = 65537 (2^{16} 1)$
 - also see choices of e = 3 or e = 17
- but if e too small (eg. e = 3) can attack
 - using Chinese remainder theorem and 3 messages with different moduli
- if e fixed must ensure GCD (e, \varnothing (n)) = 1
 - ie reject any p or q where $p{-}1$ or $q{-}1$ are not relatively prime to e

RSA Key Generation

- users of RSA must:
 - determine two primes at random p, q
 - select either e or d and compute the other
- primes p, q must not be easily derived from modulus n = p.q
 - means must be sufficiently large
 - typically guess and use probabilistic test
- exponents e, d are inverses, so use Inverse algorithm to compute the other

Efficient Decryption

- decryption uses exponentiation to power d
 this is likely large, insecure if not
- can use the Chinese Remainder Theorem (CRT) to compute mod p and mod q separately; then combine to get answer
 approx 4 times faster than doing directly
- only owner of private key who knows values of p and q can use this technique

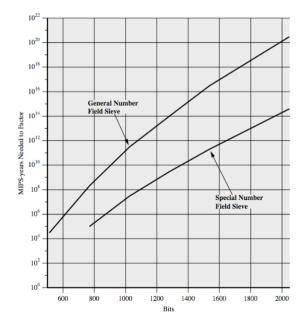
RSA Security

- possible approaches to attacking RSA are:
 - brute force key search infeasible given size of numbers
 - mathematical attacks based on difficulty of computing ø(n), by factoring modulus n
 - timing attacks on running of decryption
 - chosen ciphertext attacks given properties of RSA

Factoring Problem

- mathematical approach takes 3 forms:
 - factor n = p.q, hence compute $\emptyset(n)$ and then d
 - determine \emptyset (n) directly and compute d
 - find d directly
- currently believe all equivalent to factoring
 - have seen slow improvements over the years
 - as of May-05 best is 200 decimal digits (663) bit with LS
 - biggest improvement comes from improved algorithm
 - · cf QS to GNFS to LS
 - currently assume 1024-2048 bit RSA is secure
 - ensure p, q of similar size and matching other constraints

Progress in Factoring



Progress in Factoring

Number of Decimal Digits	Approximate Number of Bits	Date Achieved	MIPS-years	Algorithm
100	332	April 1991	7	quadratic sieve
110	365	April 1992	75	quadratic sieve
120	398	June 1993	830	quadratic sieve
129	428	April 1994	5000	quadratic sieve
130	431	April 1996	1000	generalized number field sieve
140	465	February 1999	2000	generalized number field sieve
155	512	August 1999	8000	generalized number field sieve
160	530	April 2003	-	Lattice sieve
174	576	December 2003	_	Lattice sieve
200	663	May 2005	_	Lattice sieve

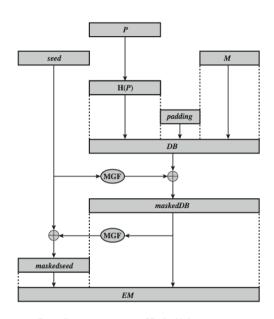
Timing Attacks

- developed by Paul Kocher in mid-1990's
- exploit timing variations in operations
 - eg. multiplying by small vs large number
 - or IF's varying which instructions executed
- · infer operand size based on time taken
- RSA exploits time taken in exponentiation
- countermeasures
 - use constant exponentiation time
 - add random delays
 - blind values used in calculations

Chosen Ciphertext Attacks

- RSA is vulnerable to a Chosen Ciphertext Attack (CCA)
- attacker chooses ciphertexts and gets decrypted plaintext back
- choose ciphertext to exploit properties of RSA to provide info to help cryptanalysis
- can counter with random pad of plaintext
- or use Optimal Asymmetric Encryption Padding (OASP)

Optimal
Asymmetric
Encryption
Padding
(OASP)



P = encoding parameters M = message to be encoded H = hash function

MGF = mask generating function EM = encoded message