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Terminology

• Origin Server
– The Web server that hosts the resource

• Proxy Server
– Intermediate server that accepts requests from clients 

and forwards them to (towards) origin servers, to other 
proxy servers, or services request from its cache.

– Acts as server to requesting client, and as client to 
origin server
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Web Caches (proxy server)

• configure browser: Web 
accesses via web cache

• client sends all http 
requests to  web cache
– if object at web cache, 

web cache immediately 
returns object in http 
response 

– else requests object from 
origin server, then returns 
http response to client

Goal: satisfy client request without involving origin server
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Figure from RFC 2616
request chain -------------------------------------->

UA -----v----- A -----v----- B -----v----- C -----v----- O 
<------------------------------------- response chain 

The figure above shows three 
intermediaries (A, B, and C) between 
the user agent (UA) and origin server 
(O).
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Why Web Caching?
Assume: cache is “close” 

to client
• smaller response time
• decrease traffic to 

distant servers
– link out of 

institutional/local ISP 
network is often a 
bottleneck  
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Web Caching Summary

• Web proxy Servers store copies of documents retrieved 
from origin servers

• Advantages
– Improve performance (latency reduction, bandwidth 

conservation)
– Advanced access control (intermediate requester in

firewalled DMZ, authentication & authorization)
– Advanced filtering (e.g. detect espionage!)
– Logging and auditing

• Disadvantages
– Recognizing and avoiding stale (out of date) data
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Proxy Server:  Basic Operation

• Accept connection request from client
– establishes new Socket client_sock

• Read HTTP request
• Parse HTTP request

– reject invalid requests with appropriate response code
– Request is REQUIRED to be in absoluteURI form

• (see RFC 2396)

• Connect to (towards) requested server 
– establishes new socket serv_sock

• Send original HTTP request to server
– or to next proxy on path to server
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Proxy Server:  Basic Operation (continued)

• Read response from Server
– If time-out server connection, then issue

– 504 Gateway Timeout

• Copy object in response to cache, if allowed
• Send response to client
• If Connection: close header received, 

close client connection (client_sock)
• What about server connection (serv_sock)?
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HTTP 1.1 Cache Control Directives

• Control an object’s “cacheability”
– RFC 2616 Section 14.9

• Examples
– Cache-Control: general header is used to specify 

directives that MUST be obeyed by ALL proxy servers 
handling the request or response.

– Directives used in Requests
no-cache an end-to-end revalidation should be preformed
no-store sensitive information: do not store any part of 

request or response on disk
max-age=<delta-seconds> max age acceptable to client
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Cache Control Directives (cont.)

• Directives used in responses
public response is cacheable by any cache (proxy or 

client)
private response is cacheable by client only
no-cache cache MUST NOT use the response 

to satisfy a subsequent request (for example, 
dynamic pages)

no-store response may not be written to disk
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Proxy Server:  Using Cached Objects

Parse HTTP request
look for the URL in the cache
if (object is found) then

if (fresh) then
send response to client with the object

else
// validation, see below

end_if
end_if
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Proxy Server:  Validate a Stale Object
Proxy: 

Forward ‘conditional’ request towards server with 
an “If-Modified-Since” header with the object’s 
modification date

Server: 
If (the object has been modified since the If-
Modified-Since date) then

return the object in the response
Else (the object has not been modified)
return a 304 (Not Modified) response

Proxy:
If( receives 304) then send object from cache
If( receives new object) then cache and send it, 

Avoids 
– transmitting the full response if the object is current
– an extra round trip if the object is stale
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Proxy Server:  Validate a Stale Object, cont.
– Validation

•More general that ‘creation date’ and ‘If-Modified-
Mince’

– Includes
•Expires date
•Age allowed
•Heuristic expiration times

– Quite complex—see 13.2 of 2616
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Request Loops

• … to avoid request loops, a proxy 
MUST be able to recognize all of its 
server names, including any aliases, 
local variations, and the numeric IP 
address. 

request chain -------------------------------------->
UA -----v----- A -----v----- B -----v----- C -----v----- O 

^---------------------------|
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Cache Architectures

• Components of a Web proxy cache
– Network communications
– Storage mechanism for storing the cache data
– Mapping mechanism to establish relationship 

between URLs and their cached copies
– Format for cached object content and its 

metadata
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Cache Architecture: mapping

• Direct mapping
– e.g, map URL to a file system path
– direct mappings are reversible

• Hash mapping
– compute some unique ID
– could be file name or index to table
– not reversible
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Existing Mapping Mechanisms

• Directly mapping URLs to filesystem
– Original CERN httpd used a tree map
– Easy to implement, but not a good performer

• long pathnames = long inode search
• garbage collection requires complete traversal of 

tree
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Existing Mapping Mechanisms

• Hashing URLs 
– Netscape Proxy server

• Object location (on disk) based on MD5 hash
– very fast
– good distribution of different object types (image, text) 

across cache
– disadvantage: cannot compute URLs from hash
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Alternative Cache Protocols

• On-Demand
– document does not exist in cache unless it has 

been requested (at least once) by some client

• On-Command, or Pre-Fetch
– proxy server automatically retrieves documents 

(or even entire web sites!) at regular intervals
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General Purpose Proxy Servers
• Transparency

– users get same response whether connection was direct or to proxy 
(a non-transparent proxy modifies content in some way)

• Use is client controlled
– client programs (e.g., browsers) can be configured to use (or not 

use) proxy servers.

• Origin Server is unaware of proxy server
– Origin Server does not have to process request from proxy 

differently than from other client

• Example  protocols
– Ftp, ssh, socks, telnet, SMTP

• Typical Location
– Firewalled DMZ
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Other Intermediate Systems
• Firewall

– General term for hardware, software, or combination used to 
protect internal network from intruders.

– Uses packet filtering to enforce generic security policies
– Uses application level proxy servers to enforce protocol-specific 

polices

• Packet filter
– Control based on something in packet headers (e.g., IP addresses

or port numbers)

• Application level proxy
– Control based on knowledge of application level protocol (.e.g, 

SMTP headers or HTTP methods)
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HTTP State Management: Cookies

• We said earlier that HTTP is a stateless protocol
• We also said that stateful protocols can provide 

improved performance.  This feature is usually 
established by the idea of a “session” between 
client and server.

• So, cookies enable HTTP sessions
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Cookies

• Cookie protocol - RFC 2109
• A cookie is a token given to a client by a server

– Server sends Set-cookie: <cookie> header in a response
– Client associates <cookie> with the server that sent it

• The cookie a sequence of name/value pairs
• Each cookie has a unique name
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Cookie Fields
• NAME=VALUE 

– REQUIRED. The name of the "cookie" is NAME, and its value is 
VALUE.

• Domain=value 
– OPTIONAL. The Domain attribute specifies the domain for 

which the cookie is valid.
• Path=value OPTIONAL. 

– The Path attribute specifies the subset of URLs on the origin 
server to which this cookie applies.

• Secure
– OPTIONAL. The Secure attribute directs the user agent to use 

only secure means to contact the origin server whenever it 
sends back this cookie. 

• Version=value 
– REQUIRED. The Version attribute identifies the version of the 

state management specification to which the cookie 
conforms.
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Example Cookies
Origin server domain name Path Secure Name Value

.google.com / FALSE PREF ID=3e9b22dc195e9901:LD=en:NR=50:
TM=1027083506:LM=1061947174
:S=SOI90sazZHxYdFy4

.intellicast.com / FALSE RMID 426cdd9b3ed8ad10

smallbusiness.yahoo.com /webhosting/ FALSE bmcPromoCode 1

12.46.120.19 / FALSE HASBRO_ID 66.108.222.128-70824240.29582435:
:863790A4DC04E40567FF2D0CF4145723
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Client-server Interaction: Cookies

• server sends “cookie” to 
client in response message
Set-cookie: 1678453

• client presents cookie in later 
requests
Cookie: 1678453

• server matches presented-
cookie with server-stored info
– authentication
– remembering user 

preferences, previous 
choices

client server
usual http request msg

usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

cookie-
spectific

action


