
Internet and Intranet Protocols and
Applications

Lecture 8a: WWW Proxy Servers
and Cookies
March, 2004
Arthur Goldberg

Computer Science Department
New York University

artg@cs.nyu.edu

2

Terminology

• Origin Server
– The Web server that hosts the resource

• Proxy Server
– Intermediate server that accepts requests from clients

and forwards them to (towards) origin servers, to other
proxy servers, or services request from its cache.

– Acts as server to requesting client, and as client to
origin server

3

Web Caches (proxy server)

• configure browser: Web
accesses via web cache

• client sends all http
requests to web cache
– if object at web cache,

web cache immediately
returns object in http
response

– else requests object from
origin server, then returns
http response to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

http
requ

est

http response

http
resp

onse

http
requ

est

http
resp

onse

http requesthttp response

origin
server

origin
server

4

Figure from RFC 2616
request chain -------------------------------------->

UA -----v----- A -----v----- B -----v----- C -----v----- O
<------------------------------------- response chain

The figure above shows three
intermediaries (A, B, and C) between
the user agent (UA) and origin server
(O).

5

Why Web Caching?
Assume: cache is “close”

to client
• smaller response time
• decrease traffic to

distant servers
– link out of

institutional/local ISP
network is often a
bottleneck

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

6

Web Caching Summary

• Web proxy Servers store copies of documents retrieved
from origin servers

• Advantages
– Improve performance (latency reduction, bandwidth

conservation)
– Advanced access control (intermediate requester in

firewalled DMZ, authentication & authorization)
– Advanced filtering (e.g. detect espionage!)
– Logging and auditing

• Disadvantages
– Recognizing and avoiding stale (out of date) data

7

Proxy Server: Basic Operation

• Accept connection request from client
– establishes new Socket client_sock

• Read HTTP request
• Parse HTTP request

– reject invalid requests with appropriate response code
– Request is REQUIRED to be in absoluteURI form

• (see RFC 2396)

• Connect to (towards) requested server
– establishes new socket serv_sock

• Send original HTTP request to server
– or to next proxy on path to server

8

Proxy Server: Basic Operation (continued)

• Read response from Server
– If time-out server connection, then issue

– 504 Gateway Timeout

• Copy object in response to cache, if allowed
• Send response to client
• If Connection: close header received,

close client connection (client_sock)
• What about server connection (serv_sock)?

9

HTTP 1.1 Cache Control Directives

• Control an object’s “cacheability”
– RFC 2616 Section 14.9

• Examples
– Cache-Control: general header is used to specify

directives that MUST be obeyed by ALL proxy servers
handling the request or response.

– Directives used in Requests
no-cache an end-to-end revalidation should be preformed
no-store sensitive information: do not store any part of

request or response on disk
max-age=<delta-seconds> max age acceptable to client

10

Cache Control Directives (cont.)

• Directives used in responses
public response is cacheable by any cache (proxy or

client)
private response is cacheable by client only
no-cache cache MUST NOT use the response

to satisfy a subsequent request (for example,
dynamic pages)

no-store response may not be written to disk

11

Proxy Server: Using Cached Objects

Parse HTTP request
look for the URL in the cache
if (object is found) then

if (fresh) then
send response to client with the object

else
// validation, see below

end_if
end_if

12

Proxy Server: Validate a Stale Object
Proxy:

Forward ‘conditional’ request towards server with
an “If-Modified-Since” header with the object’s
modification date

Server:
If (the object has been modified since the If-
Modified-Since date) then

return the object in the response
Else (the object has not been modified)
return a 304 (Not Modified) response

Proxy:
If(receives 304) then send object from cache
If(receives new object) then cache and send it,

Avoids
– transmitting the full response if the object is current
– an extra round trip if the object is stale

13

Proxy Server: Validate a Stale Object, cont.
– Validation

•More general that ‘creation date’ and ‘If-Modified-
Mince’

– Includes
•Expires date
•Age allowed
•Heuristic expiration times

– Quite complex—see 13.2 of 2616

14

Request Loops

• … to avoid request loops, a proxy
MUST be able to recognize all of its
server names, including any aliases,
local variations, and the numeric IP
address.

request chain -------------------------------------->
UA -----v----- A -----v----- B -----v----- C -----v----- O

^---------------------------|

15

Cache Architectures

• Components of a Web proxy cache
– Network communications
– Storage mechanism for storing the cache data
– Mapping mechanism to establish relationship

between URLs and their cached copies
– Format for cached object content and its

metadata

16

Cache Architecture: mapping

• Direct mapping
– e.g, map URL to a file system path
– direct mappings are reversible

• Hash mapping
– compute some unique ID
– could be file name or index to table
– not reversible

17

Existing Mapping Mechanisms

• Directly mapping URLs to filesystem
– Original CERN httpd used a tree map
– Easy to implement, but not a good performer

• long pathnames = long inode search
• garbage collection requires complete traversal of

tree

18

Existing Mapping Mechanisms

• Hashing URLs
– Netscape Proxy server

• Object location (on disk) based on MD5 hash
– very fast
– good distribution of different object types (image, text)

across cache
– disadvantage: cannot compute URLs from hash

19

Alternative Cache Protocols

• On-Demand
– document does not exist in cache unless it has

been requested (at least once) by some client

• On-Command, or Pre-Fetch
– proxy server automatically retrieves documents

(or even entire web sites!) at regular intervals

20

General Purpose Proxy Servers
• Transparency

– users get same response whether connection was direct or to proxy
(a non-transparent proxy modifies content in some way)

• Use is client controlled
– client programs (e.g., browsers) can be configured to use (or not

use) proxy servers.

• Origin Server is unaware of proxy server
– Origin Server does not have to process request from proxy

differently than from other client

• Example protocols
– Ftp, ssh, socks, telnet, SMTP

• Typical Location
– Firewalled DMZ

21

Other Intermediate Systems
• Firewall

– General term for hardware, software, or combination used to
protect internal network from intruders.

– Uses packet filtering to enforce generic security policies
– Uses application level proxy servers to enforce protocol-specific

polices

• Packet filter
– Control based on something in packet headers (e.g., IP addresses

or port numbers)

• Application level proxy
– Control based on knowledge of application level protocol (.e.g,

SMTP headers or HTTP methods)

22

HTTP State Management: Cookies

• We said earlier that HTTP is a stateless protocol
• We also said that stateful protocols can provide

improved performance. This feature is usually
established by the idea of a “session” between
client and server.

• So, cookies enable HTTP sessions

23

Cookies

• Cookie protocol - RFC 2109
• A cookie is a token given to a client by a server

– Server sends Set-cookie: <cookie> header in a response
– Client associates <cookie> with the server that sent it

• The cookie a sequence of name/value pairs
• Each cookie has a unique name

24

Cookie Fields
• NAME=VALUE

– REQUIRED. The name of the "cookie" is NAME, and its value is
VALUE.

• Domain=value
– OPTIONAL. The Domain attribute specifies the domain for

which the cookie is valid.
• Path=value OPTIONAL.

– The Path attribute specifies the subset of URLs on the origin
server to which this cookie applies.

• Secure
– OPTIONAL. The Secure attribute directs the user agent to use

only secure means to contact the origin server whenever it
sends back this cookie.

• Version=value
– REQUIRED. The Version attribute identifies the version of the

state management specification to which the cookie
conforms.

25

Example Cookies
Origin server domain name Path Secure Name Value

.google.com / FALSE PREF ID=3e9b22dc195e9901:LD=en:NR=50:
TM=1027083506:LM=1061947174
:S=SOI90sazZHxYdFy4

.intellicast.com / FALSE RMID 426cdd9b3ed8ad10

smallbusiness.yahoo.com /webhosting/ FALSE bmcPromoCode 1

12.46.120.19 / FALSE HASBRO_ID 66.108.222.128-70824240.29582435:
:863790A4DC04E40567FF2D0CF4145723

26

Client-server Interaction: Cookies

• server sends “cookie” to
client in response message
Set-cookie: 1678453

• client presents cookie in later
requests
Cookie: 1678453

• server matches presented-
cookie with server-stored info
– authentication
– remembering user

preferences, previous
choices

client server
usual http request msg

usual http response +
Set-cookie: #

usual http request msg
cookie: #

usual http response msg

usual http request msg
cookie: #

usual http response msg

cookie-
spectific

action

cookie-
spectific

action

