
Distributed Systems Fö 5 - 1

Petru Eles, IDA, LiTH

TIME AND STATE IN DISTRIBUTED
SYSTEMS

1. Time in Distributed Systems

2. Lamport’s Logical Clocks

3. Vector Clocks

4. Causal Ordering of Messages

5. Global States and their Consistency

6. Cuts of a Distributed Computation

7. Recording of a Global State

Distributed Systems Fö 5 - 2

Petru Eles, IDA, LiTH

Time in Distributed Systems

☞ Because each machine in a distributed system has
its own clock there is no notion of global physical time.

• The n crystals on the n computers will run at slightly
different rates, causing the clocks gradually to get
out of synchronization and give different values.

Problems:

• Time triggered systems: these are systems in
which certain activities are scheduled to occur at
predefined moments in time. If such activities are to
be coordinated over a distributed system we need a
coherent notion of time.

Example: time-triggered real-time systems

• Maintaining the consistency of distributed data is
often based on the time when a certain modification
has been performed.

Example: a make program.

Distributed Systems Fö 5 - 3

Petru Eles, IDA, LiTH

Time in Distributed Systems (cont’d)

The make-program example

• When the programmer has finished changing some
source files he starts make; make examines the
times at which all object and source files were last
modified and decides which source files have to be
(re)compiled.

Although P.c is modified after P.o has been
generated, because of the clock drift the time
assigned to P.c is smaller.

P.c will not be recompiled for the new version!

652 653 654 655 656Computer 1
(compiler)

Computer 2
(editor)

local
physical

clock

P.c created

P.o created

648 649 650 651 652

local
physical

clock

Distributed Systems Fö 5 - 4

Petru Eles, IDA, LiTH

Time in Distributed Systems (cont’d)

Solutions:

☞ Synchronization of physical clocks

• Computer clocks are synchronized with one
another to an achievable, known, degree of
accuracy ⇒ within the bounds of this accuracy we
can coordinate activities on different computers
using each computer’s local clock.

• Physical clock synchronization is needed for
distributed real-time systems.

☞ Logical clocks

• In many applications we are not interested in the
physical time at which events occur; what is
important is the relative order of events!
The make-program is such an example (slide 3).

• In such situations we don’t need synchronized
physical clocks.
Relative ordering is based on a virtual notion of
time - logical time.

• Logical time is implemented using logical clocks.

Distributed Systems Fö 5 - 5

Petru Eles, IDA, LiTH

Lamport’s Logical Clocks

☞ The order of events occurring at different processes
is critical for many distributed applications.
Example: P.o_created and P.c_created in slide 3.

☞ Ordering can be based on two simple situations:
1. If two events occurred in the same process

then they occurred in the order observed fol-
lowing the respective process;

2. Whenever a message is sent between
processes, the event of sending the message
occurred before the event of receiving it.

☞ Ordering by Lamport is based on the happened-
before relation (denoted by →):

• a → b, if a and b are events in the same process
and a occurred before b;

• a → b, if a is the event of sending a message m in a
process, and b is the event of the same message m
being received by another process;

• If a → b and b → c, then a → c (the relation is
transitive).

Distributed Systems Fö 5 - 6

Petru Eles, IDA, LiTH

Lamport’s Logical Clocks (cont’d)

• If a → b, we say that event a causally affects event b.
The two events are causally related.

• There are events which are not related by the
happened-before relation.
If both a → e and e → a are false, then a and e are
concurrent events; we write a || e.

P1, P2, P3: processes;
a, b, c, d, e, f: events;

a → b, c → d, e → f, b → c, d → f
a → c, a → d, a → f, b → d, b → f, ...
a || e, c || e, ...

a
P1

P2

P3

b

c d

e f

m
1

m
2

Distributed Systems Fö 5 - 7

Petru Eles, IDA, LiTH

Lamport’s Logical Clocks (cont’d)

☞ Using physical clocks, the happened before relation
can not be captured. It is possible that b → c and at
the same time Tb > Tc (Tb is the physical time of b).

☞ Logical clocks can be used in order to capture the
happened-before relation.

• A logical clock is a monotonically increasing
software counter.

• There is a logical clock CPi at each process Pi in
the system.

• The value of the logical clock is used to assign
timestamps to events.
CPi(a) is the timestamp of event a in process Pi.

• There is no relationship between a logical clock and
any physical clock.

To capture the happened-before relation, logical clocks
have to be implemented so that

if a → b, then C(a) < C(b)

Distributed Systems Fö 5 - 8

Petru Eles, IDA, LiTH

Lamport’s Logical Clocks (cont’d)

☞ Implementation of logical clocks is performed using
the following rules for updating the clocks and
transmitting their values in messages:

[R1]: CPi is incremented before each event is issued at
process Pi: CPi := CPi + 1.

[R2]: a) When a is the event of sending a message m
from process Pi, then the timestamp tm = CPi(a)
is included in m (CPi(a) is the logical clock
value obtained after applying rule R1).

b) On receiving message m by process Pj, its
logical clock CPj is updated as follows:
CPj := max(CPj, tm).

c) The new value of CPj is used to timestamp the
event of receiving message m by Pj (applying
rule R1).

• If a and b are events in the same process and a oc-
curred before b, then a → b, and (by R1) C(a) < C(b).

• If a is the event of sending a message m in a
process, and b is the event of the same message m
being received by another process, then a → b, and
(by R2) C(a) < C(b).

• If a → b and b → c, then a → c, and (by induction)
C(a) < C(c).

Distributed Systems Fö 5 - 9

Petru Eles, IDA, LiTH

Lamport’s Logical Clocks (cont’d)

• For the make-program example we suppose that a
process running a compilation notifies, through a
message, the process holding the source file about
the event P.o created ⇒ a logical clock can be used
to correctly timestamp the files.

a
P1

P2

P3

b

c d

e f

m
1

m
2

1 2

3 4

1 5

652 653 654 655 656Computer 1
(compiler)

Computer 2
(editor)

local
physical

clock

P.c created

P.o created

648 649 650 651 652

local
physical

clock

1 2

3 41

Distributed Systems Fö 5 - 10

Petru Eles, IDA, LiTH

Problems with Lamport’s Logical Clocks

☞ Lamport’s logical clocks impose only a partial order
on the set of events; pairs of distinct events generated
by different processes can have identical timestamp.

• For certain applications a total ordering is needed;
they consider that no two events can occur at the
same time.

• In order to enforce total ordering a global logical
timestamp is introduced:

- the global logical timestamp of an event a oc-
curring at process Pi, with logical timestamp
CPi(a), is a pair (CPi(a), i), where i is an identifi-
er of process Pi;

- we define
(CPi(a), i) < (CPj(b), j) if and only if
CPi(a) < CPj(b), or CPi(a) = CPj(b) and i < j.

a
P1

P2

P3

b

c d

e f

m
1

m
2

(1,1) (2,1)

(3,2) (4,2)

(1,3) (5,3)

Distributed Systems Fö 5 - 11

Petru Eles, IDA, LiTH

Problems with Lamport’s Logical Clocks (cont’d)

☞ Lamport’s logical clocks are not powerful enough to
perform a causal ordering of events.

• if a → b, then C(a) < C(b).
However, the reverse is not always true (if the
events occurred in different processes):
if C(a) < C(b), then a → b is not necessarily true.
(it is only guaranteed that b → a is not true).

C(e) < C(b), however there is no causal relation
from event e to event b.

• By just looking at the timestamps of the events, we
cannot say whether two events are causally related
or not.

a
P1

P2

P3

b

c d

e f

m
1

m
2

(1,1) (2,1)

(3,2) (4,2)

(1,3) (5,3)

Distributed Systems Fö 5 - 12

Petru Eles, IDA, LiTH

Problems with Lamport’s Logical Clocks (cont’d)

• We would like messages to be processed
according to their causal order.
We would like to use the associated timestamp for
this purpose.

• Process P3 receives messages M1, M2, and M3.
send(M1) → send(M2), send(M1) → send(M3),
send(M3) || send(M2)

• M1 has to be processed before M2 and M3.
However P3 has not to wait for M3 in order to
process it before M2 (although M3’s logical clock
timestamp is smaller than M2’s).

P1

P2

P3 M1

2

1 2

3 4

1
1

send(M1)

send(M2)

send(M3)

3

M2
4

M3
3

Distributed Systems Fö 5 - 13

Petru Eles, IDA, LiTH

Vector Clocks

☞ Vector clocks give the ability to decide whether two
events are causally related or not by simply looking at
their timestamp.

• Each process Pi has a clock Cv
Pi, which is an

integer vector of length n (n is the number of
processes).

• The value of Cv
Pi is used to assign timestamps to

events in process Pi.
Cv

Pi(a) is the timestamp of event a in process Pi.

• Cv
Pi[i], the ith entry of Cv

Pi,corresponds to Pi’s own
logical time.

• Cv
Pi[j], j ≠ i, is Pi’s "best guess" of the logical time at Pj.

Cv
Pi[j] indicates the (logical) time of occurrence

of the last event at Pj which is in a happened-
before relation to the current event at Pi.

Distributed Systems Fö 5 - 14

Petru Eles, IDA, LiTH

Vector Clocks (cont’d)

☞ Implementation of vector clocks is performed using
the following rules for updating the clocks and
transmitting their values in messages:

[R1]: Cv
Pi is incremented before each event is issued at

process Pi: Cv
Pi[i] := Cv

Pi[i] + 1.

[R2]: a) When a is the event of sending a message m
from process Pi, then the timestamp tm = Cv

Pi(a)
is included in m (Cv

Pi(a) is the vector clock value
obtained after applying rule R1).

b) On receiving message m by process Pj, its
vector clock Cv

Pj is updated as follows:
∀ k ∈ {1,2,..,n}, Cv

Pj[k] := max(Cv
Pj[k], tm[k]).

c) The new value of Cv
Pj is used to timestamp the

event of receiving message m by Pj (applying
rule R1).

Distributed Systems Fö 5 - 15

Petru Eles, IDA, LiTH

Vector Clocks (cont’d)

For any two vector timestamps u and v, we have:
• u = v if and only if ∀ i, u[i] = v[i]
• u ≤ v if and only if ∀ i, u[i] ≤ v[i]
• u < v if and only if (u ≤ v ∧ u ≠ v)
• u || v if and only if ¬ (u < v) ∧ ¬ (v < u)

☞ Two events a and b are causally related if and only if
Cv(a) < Cv(b) or Cv(b) < Cv(a). Otherwise the events
are concurrent.

☞ With vector clocks we get the property which we
missed for Lamport’s logical clocks:

• a → b if and only if Cv(a) < Cv(b).
Thus, by just looking at the timestamps of the
events, we can say whether two events are causally
related or not.

a
P1

P2

P3

b c

d e f

(1,0,0)

g h

(2,0,0) (3,0,0)

(0,1,0) (2,2,0) (2,3,1) (2,4,1)

(0,0,1) (2,4,2)

Distributed Systems Fö 5 - 16

Petru Eles, IDA, LiTH

Causal Ordering of Messages Using
Vector Clocks

The problem has been formulated on slide 12:

☞ We would like messages to be processed according
to their causal order.

• If Send(M1) → Send(M2), then every recipient of
both messages M1 and M2 must receive M1 before
M2.

Distributed Systems Fö 5 - 17

Petru Eles, IDA, LiTH

Causal Ordering of Messages Using
Vector Clocks (cont’d)

☞ A message delivery protocol which preforms causal
ordering based on vector clocks.

• Basic Idea:
- A message is delivered to a process only if the

message immediately preceding it (considering
the causal ordering) has been already delivered
to the process. Otherwise, the message is
buffered.

• We assume that processes communicate using
broadcast messages.
(There exist similar protocols for non-broadcast
communication too.)

P1

P2

P3

(0,1,0)

(0,1,0)

(0,1,1)

(0,2,1)

(0,2,1)

(0,2,1)

(0,1,1)

(0,1,1)

(0,1,0)

(0,0,0)

(0,0,0)

(0,0,0)

Distributed Systems Fö 5 - 18

Petru Eles, IDA, LiTH

Causal Ordering of Messages Using
Vector Clocks (cont’d)

• The events which are of interest here are the
sending of messages ⇒ vector clocks will be
incremented only for message sending.

☞ Implementation of the protocol is based on the
following rules:

[R1]: a) Before broadcasting a message m, a process Pi
increments the vector clock: Cv

Pi[i] := Cv
Pi[i] + 1.

b) The timestamp tm = Cv
Pi is included in m.

[R2]: The receiving side, at process Pj, delays the
delivery of message m coming from Pi until both
the following conditions are satisfied:
1. Cv

Pj[i] = tm[i] - 1
2. ∀ k ∈ {1,2,..,n} - {i}, Cv

Pj[k] ≥ tm[k]
Delayed messages are queued at each process in
a queue that is sorted by their vector timestamp;
concurrent messages are ordered by the time of
their arrival.

[R3]: When a message is delivered at process Pj, its
vector clock Cv

Pj is updated according to rule R2b
for vector clock implementation (see slide 14).

☞ tm[i] - 1 indicates how many messages originating
from Pi precede m.
Step R2.1 ensures that process Pj has received all
the messages originating from Pi that precede m.
Step R2.2 ensures that Pj has received all those
messages received by Pi before sending m.

Distributed Systems Fö 5 - 19

Petru Eles, IDA, LiTH

Global States

☞ The problem is how to collect and record a consistent
global state in a distributed system.

Why a problem?
• Because there is no global clock (no coherent

notion of time) and no shared memory!

Distributed Systems Fö 5 - 20

Petru Eles, IDA, LiTH

Global States (cont’d)

Consider a bank system with two accounts A and B at
two different sites; we transfer $50 between A and B.

A Ch1 B
C : consistent
NC: not consistent

500 empty 200 C

500 50 200 NC

450 50 200 C

450 empty 200 NC

500 50 250 NC

450 50 250 NC

450 empty 250 C

500 empty 250 NC

Ch1: $50

$450 $200

Ch2: empty
A B

$450 $250

Ch2: empty
A B

Ch1: empty

$500 $200

Ch2: empty
A B

Ch1: empty

Distributed Systems Fö 5 - 21

Petru Eles, IDA, LiTH

Global States (cont’d)

☞ In general, a global state consists of a set of local
states and a set of states of the communication
channels.

☞ The state of the communication channel in a
consistent global state should be the sequence of
messages sent along the channel before the
sender’s state was recorded, excluding the sequence
of messages received along the channel before the
receiver’s state was recorded.

☞ It is difficult to record channel states to ensure the
above rule ⇒ global states are very often recorded
without using channel states.
This is the case in the definition below.

Distributed Systems Fö 5 - 22

Petru Eles, IDA, LiTH

Formal Definition

• LSi is the local state of process Pi.
Beside other information, the local state also includes a
record of all messages sent and received by the process.

• We consider the global state GS of a system, as the
collection of the local states of its processes:
GS = {LS1, LS2, ..., LSn}.

• A certain global state can be consistent or not!

• send(mk
ij) denotes the event of sending message mk

ij from
Pi to Pj;
rec(mk

ij) denotes the event of receiving message mk
ij by Pj.

• send(mk
ij) ∈ LSi if and only if the sending event occurred

before the local state was recorded;
rec(mk

ij) ∈ LSj if and only if the receiving event occurred
before the local state was recorded.

• transit(LSi,LSj) = {mk
ij | send(mk

ij) ∈ LSi ∧ rec(mk
ij) ∉ LSj}

inconsistent(LSi,LSj) = {mk
ij | send(mk

ij) ∉ LSi ∧ rec(mk
ij) ∈ LSj}

Distributed Systems Fö 5 - 23

Petru Eles, IDA, LiTH

Formal Definition (cont’d)

☞ A global state GS = {LS1, LS2, ..., LSn} is consistent if
and only if:

∀ i, ∀ j: 1 ≤ i, j ≤ n :: inconsistent(LSi,LSj) = ∅

• In a consistent global state for every received
message a corresponding send event is recorded
in the global state.

• In an inconsistent global state, there is at least one
message whose receive event is recorded but its
send event is not recorded.

☞ A global state GS = {LS1, LS2, ..., LSn} is transitless if
and only if:

∀ i, ∀ j: 1 ≤ i, j ≤ n :: transit(LSi,LSj) = ∅
• All messages recorded to be sent are also

recorded to be received.

☞ A global state is strongly consistent if it is consistent
and transitless.

• A strongly consistent state corresponds to a
consistent state in which all messages recorded as
sent are also recorded as received.

Note: the global state, as defined here, is seen as a
collection of the local states, without explicitely
capturing the state of the channel.

Distributed Systems Fö 5 - 24

Petru Eles, IDA, LiTH

Formal Definition (cont’d)

{LS11, LS22, LS32} is inconsistent;
{LS12, LS23, LS33} is consistent;
{LS11, LS21, LS31} is strongly consistent.

P1

P2

P3

LS11 LS12

LS21 LS22 LS23

LS31 LS32 LS33

Distributed Systems Fö 5 - 25

Petru Eles, IDA, LiTH

Formal Definition (cont’d)

• After registering of the receive event(s) a consistent
state becomes strongly consistent. It is considered
to be a normal (transient) situation.

A B
C : consistent
NC: not consistent

500 200 {A,B}: strongly C

450
(mess1 sent)

200 {A,B}: C

500 250
(mess1 received)

{A,B}: NC

450
(mess1 sent)

250
(mess1 received)

{A,B}: strongly C

Ch1: $50

$450 $200

Ch2: empty
A B

$450 $250

Ch2: empty
A B

Ch1: empty

$500 $200

Ch2: empty
A B

Ch1: empty

Distributed Systems Fö 5 - 26

Petru Eles, IDA, LiTH

Cuts of a Distributed Computation

☞ A cut is a graphical representation of a global state.
A consistent cut is a graphical representation of a
consistent global state.

• A cut of a distributed computation is a set
Ct = {c1, c2, ..., cn}, where ci is the cut event at
process Pi.

• A cut event is the event of recording a local state of
the respective process.

P1

P2

P3

LS11 LS12

LS21 LS22 LS23

LS31 LS32 LS33

c1

c2

c3

c4

c5

c6

c7

c8

Distributed Systems Fö 5 - 27

Petru Eles, IDA, LiTH

Cuts of a Distributed Computation (cont’d)

☞ Let ek denote an event at process Pk.
A cut Ct = {c1, c2, ..., cn} is a consistent cut if and only if

• A cut is consistent if every message that was
received before a cut event was sent before the cut
event at the sender process.

{c1,c4,c5} is not consistent: (e1→e2) ∧ (e2→c4) ∧ ¬ (e1→c1)

∀ Pi,∀ Pj, ∃ ei,∃ ej such that (ei → ej) ∧ (ej → cj) ∧ ¬ (ei → ci)

P1

P2

P3

LS11 LS12

LS21 LS22 LS23

LS31 LS32 LS33

c1

c2

c3

c4

c5

c6

c7

c8

e1

e2

Distributed Systems Fö 5 - 28

Petru Eles, IDA, LiTH

Cuts of a Distributed Computation (cont’d)

Theorem
A cut Ct = {c1, c2, ..., cn} is a consistent cut if and only if
no two cut events are causally related, that is:

• A set of concurrent cut events form a consistent cut.

{c1,c2,c3}: strongly consistent (no communication line is
crossed)

{c6,c7,c8}: consistent (communication line is crossed but
no causal relation).

{c1,c4,c5}: not consistent; c1 → c4

P1

P2

P3

LS11 LS12

LS21 LS22 LS23

LS31 LS32 LS33

c1

c2

c3

c4

c5

c6

c7

c8

e1

e2

∀ ci, ∀ cj :: ¬ (ci → cj) ∧ ¬ (cj → ci)

dellpc
Note
Inconsistent

Distributed Systems Fö 5 - 29

Petru Eles, IDA, LiTH

Global State Recording
(Chandy-Lamport Algorithm)

• The algorithm records a collection of local states
which give a consistent global state of the system.
In addition it records the state of the channels
which is consistent with the collected global state.

• Such a recorded "view" of the system is called a
snapshot.

• We assume that processes are connected through
one directional channels and message delivery is
FIFO.

• We assume that the graph of processes and
channels is strongly connected (there exists a path
between any two processes).

• The algorithm is based on the use of a special
message, snapshot token, in order to control the
state collection process.

Distributed Systems Fö 5 - 30

Petru Eles, IDA, LiTH

Global State Recording (cont’d)

Some discussion on how to collect a global state:

• A process Pi records its local state LSi and later
sends a message m to Pj; LSj at Pj has to be
recorded before Pj has received m.

• The state SChij of the channel Chij consists of all
messages that process Pi sent before recording LSi
and which have not been received by Pj when
recording LSj.

• A snapshot is started at the request of a particular
process Pi, for example, when it suspects a
deadlock because of long delay in accessing a
resource; Pi then records its state LSi and, before
sending any other message, it sends a token to
every Pj that Pi communicates with.

• When Pj receives a token from Pi, and this is the
first time it received a token, it must record its state
before it receives the next message from Pi. After
recording its state Pj sends a token to every
process it communicates with, before sending them
any other message.

Distributed Systems Fö 5 - 31

Petru Eles, IDA, LiTH

Global State Recording (cont’d)

What about the channel states?

• Pi sends a token to Pj and this is the first time Pj
received a token ⇒ Pj immediately records its state.
All the messages sent by Pi before sending the
token have been received at Pj ⇒ SChij := ∅ .

• Pj receives a token from Pk, but Pj already recorded
its state. M is the set of messages that Pj received
from Pk after Pj recorded its state and before Pj
received the token from Pk ⇒ SChkj := M.

• The algorithm terminates when all processes have
received tokens on all their input channels.

• The process that initiated the snapshot should be
informed; it can collect the global snapshot.

Pk

Pj

token from Pk

messagesreceived
after LSj recorded

messages received
before LSj recorded

messages sent
after LSk recorded

messages sent
before LSk recorded

LSj

state of
channel Chkj

LSk

Distributed Systems Fö 5 - 32

Petru Eles, IDA, LiTH

Global State Recording (cont’d)

Maybe, you prefer this view:

• Don’t forget when you look to the picture: we
assumed that message passing on a channel
connecting two processes is FIFO.

Pi

Pk

Pj

ci

ck

cj

token sending

state of Chkj

Distributed Systems Fö 5 - 33

Petru Eles, IDA, LiTH

Global State Recording (cont’d)

The algorithm

☞ Rule for sender Pi:
/* performed by the initiating process and by any

other process at the reception of the first token */
[SR1]: Pi records its state.
[SR2]: Pi sends a token on each of its outgoing channels.

☞ Rule for receiver Pj:
/* executed whenever Pj receives a token from

another process Pi on channel Chij */
[RR1]: if Pj has not yet recorded its state then

Record the state of the channel: SChij := ∅ .
Follow the "Rule for sender".

else
Record the state of the channel: SChij := M,
where M is the set of messages that Pj
received from Pi after Pj recorded its state
and before Pj received the token on Chij.

end if.

Distributed Systems Fö 5 - 34

Petru Eles, IDA, LiTH

Summary

• In a distributed system there is no exact notion of
global physical time. Physical clocks can be
synchronized to a certain accuracy.

• In many applications not physical time is important
but only the relative ordering of certain events.
Such an ordering can be achieved using logical
clocks.

• Lamport’s logical clocks are implemented using a
monotonic integer counter at each site. They can
be used in order to capture the happened-before
relation.

• The main problem with Lamport’s clocks is that they
are not powerful enough to perform a causal
ordering of events.

• Vector clocks give the ability to decide whether two
events are causally related or not, by simply looking
at their timestamps.

Distributed Systems Fö 5 - 35

Petru Eles, IDA, LiTH

Summary (cont’d)

• As there doesn’t exist a global notion of physical
time, it is very difficult to reason about a global state
in a distributed system.

• We can consider a global state as a collection of
local states and, possibly, a set of states of the
communication channels.

• A global state can be consistent or not.

• A cut is a graphical representation of a global state.
Using cuts it is easy to elegantly reason about
consistency of global states.

• It is possible to record local states and states of the
channels, so that together they provide a consistent
view of the system. Such a view is called a
snapshot.

