
68 COMMUNICATION CHAP. 2

2.2 REMOTE PROCEDURE CALL

Many distributed systems have been based on explicit message exchange
between processes. However, the procedures send and receive do not conceal
communication, which is important to achieve access transparency in distributed
systems. This problem has long been known, but little was done about it until a
paper by Birrell and Nelson (1984) introduced a completely different way of han-
dling communication. Although the idea is refreshingly simple (once someone has
thought of it), the implications are often subtle. In this section we will examine
the concept, its implementation, its strengths, and its weaknesses.

In a nutshell, what Birrell and Nelson suggested was allowing programs to
call procedures located on other machines. When a process on machine A calls a
procedure on machine B, the calling process on A is suspended, and execution of
the called procedure takes place on B. Information can be transported from the
caller to the callee in the parameters and can come back in the procedure result.
No message passing at all is visible to the programmer. This method is known as
Remote Procedure Call, or often just RPC.

While the basic idea sounds simple and elegant, subtle problems exist. To
start with, because the calling and called procedures run on different machines,
they execute in different address spaces, which causes complications. Parameters
and results also have to be passed, which can be complicated, especially if the
machines are not identical. Finally, both machines can crash and each of the pos-
sible failures causes different problems. Still, most of these can be dealt with, and
RPC is a widely-used technique that underlies many distributed systems.

2.2.1 Basic RPC Operation

We first start with discussing conventional procedure calls, and then explain
how the call itself can be split into a client and server part that are each executed
on different machines.

Conventional Procedure Call

To understand how RPC works, it is important first to fully understand how a
conventional (i.e., single machine) procedure call works. Consider a call in C like

count = read(fd, buf, nbytes);

where fd is an integer indicating a file, buf is an array of characters into which
data are read, and nbytes is another integer telling how many bytes to read. If the
call is made from the main program, the stack will be as shown in Fig. 2-1(a)
before the call. To make the call, the caller pushes the parameters onto the stack
in order, last one first, as shown in Fig. 2-1(b). (The reason that C compilers push
the parameters in reverse order has to do with printf—by doing so, printf can
always locate its first parameter, the format string.) After read has finished

SEC. 2.2 REMOTE PROCEDURE CALL 69

running, it puts the return value in a register, removes the return address, and
transfers control back to the caller. The caller then removes the parameters from
the stack, returning it to the original state.

local variables local variables
Main program's Main program's

Stack pointer

(a) (b)

bytes
buf
fd
return address
read's local
variables

Figure 2-1. (a) Parameter passing in a local procedure call: the stack before the
call to read. (b) The stack while the called procedure is active.

Several things are worth noting. For one, in C, parameters can be call-by-
value or call-by-reference. A value parameter, such as fd or nbytes, is simply
copied to the stack as shown in Fig. 2-1(b). To the called procedure, a value par-
ameter is just an initialized local variable. The called procedure may modify it,
but such changes do not affect the original value at the calling side.

A reference parameter in C is a pointer to a variable (i.e., the address of the
variable), rather than the value of the variable. In the call to read, the second par-
ameter is a reference parameter because arrays are always passed by reference in
C. What is actually pushed onto the stack is the address of the character array. If
the called procedure uses this parameter to store something into the character
array, it does modify the array in the calling procedure. The difference between
call-by-value and call-by-reference is quite important for RPC, as we shall see.

One other parameter passing mechanism also exists, although it is not used in
C. It is called call-by-copy/restore . It consists of having the variable copied to
the stack by the caller, as in call-by-value, and then copied back after the call,
overwriting the caller’s original value. Under most conditions, this achieves
exactly the same effect as call-by-reference, but in some situations, such as the
same parameter being present multiple times in the parameter list, the semantics
are different. The call-by-copy/restore mechanism is not used in many languages.

The decision of which parameter passing mechanism to use is normally made
by the language designers and is a fixed property of the language. Sometimes it
depends on the data type being passed. In C, for example, integers and other
scalar types are always passed by value, whereas arrays are always passed by
reference, as we have seen. Some Ada compilers use copy/restore for in out

70 COMMUNICATION CHAP. 2

parameters, but others use call-by-reference. The language definition permits
either choice, which makes the semantics a bit fuzzy.

Client and Server Stubs

The idea behind RPC is to make a remote procedure call look as much as pos-
sible like a local one. In other words, we want RPC to be transparent—the calling
procedure should not be aware that the called procedure is executing on a dif-
ferent machine or vice versa. Suppose that a program needs to read some data
from a file. The programmer puts a call to read in the code to get the data. In a
traditional (single-processor) system, the read routine is extracted from the library
by the linker and inserted into the object program. It is a short procedure, which is
generally implemented by calling an equivalent read system call. In other words,
the read procedure is a kind of interface between the user code and the local
operating system.

Even though read does a system call, it is called in the usual way, by pushing
the parameters onto the stack, as shown in Fig. 2-1(b). Thus the programmer does
not know that read is actually doing something fishy.

RPC achieves its transparency in an analogous way. When read is actually a
remote procedure (e.g., one that will run on the file server’s machine), a different
version of read, called a client stub, is put into the library. Like the original one,
it, too, is called using the calling sequence of Fig. 2-1(b). Also like the original
one, it too, does a call to the local operating system. Only unlike the original one,
it does not ask the operating system to give it data. Instead, it packs the param-
eters into a message and requests that message to be sent to the server as illus-
trated in Fig. 2-2. Following the call to send, the client stub calls receive, block-
ing itself until the reply comes back.

Call local procedure
and return results

Call remote
procedure

Return
from call

Client

Request Reply

Server
Time

Wait for result

Figure 2-2. Principle of RPC between a client and server program.

When the message arrives at the server, the server’s operating system passes
it up to a server stub. A server stub is the server-side equivalent of a client stub:
it is a piece of code that transforms requests coming in over the network into local
procedure calls. Typically the server stub will have called receive and be blocked
waiting for incoming messages. The server stub unpacks the parameters from the

SEC. 2.2 REMOTE PROCEDURE CALL 71

message and then calls the server procedure in the usual way (i.e., as in Fig. 2-1).
From the server’s point of view, it is as though it is being called directly by the
client—the parameters and return address are all on the stack where they belong
and nothing seems unusual. The server performs its work and then returns the
result to the caller in the usual way. For example, in the case of read, the server
will fill the buffer, pointed to by the second parameter, with the data. This buffer
will be internal to the server stub.

When the server stub gets control back after the call has completed, it packs
the result (the buffer) in a message and calls send to return it to the client. After
that, the server stub usually does a call to receive again, to wait for the next
incoming request.

When the message gets back to the client machine, the client’s operating sys-
tem sees that it is addressed to the client process (or actually the client stub, but
the operating system cannot see the difference). The message is copied to the
waiting buffer and the client process unblocked. The client stub inspects the mes-
sage, unpacks the result, copies it to its caller, and returns in the usual way. When
the caller gets control following the call to read, all it knows is that its data are
available. It has no idea that the work was done remotely instead of by the local
operating system.

This blissful ignorance on the part of the client is the beauty of the whole
scheme. As far as it is concerned, remote services are accessed by making ordi-
nary (i.e., local) procedure calls, not by calling send and receive. All the details
of the message passing are hidden away in the two library procedures, just as the
details of actually making system calls are hidden away in traditional libraries.

To summarize, a remote procedure call occurs in the following steps:

1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and calls the local operating system.

3. The client’s OS sends the message to the remote OS.

4. The remote OS gives the message to the server stub.

5. The server stub unpacks the parameters and calls the server.

6. The server does the work and returns the result to the stub.

7. The server stub packs it in a message and calls its local OS.

8. The server’s OS sends the message to the client’s OS.

9. The client’s OS gives the message to the client stub.

10. The stub unpacks the result and returns to the client.

The net effect of all these steps is to convert the local call by the client procedure
to the client stub, to a local call to the server procedure without either client or

72 COMMUNICATION CHAP. 2

server being aware of the intermediate steps.

2.2.2 Parameter Passing

The function of the client stub is to take its parameters, pack them into a mes-
sage, and send them to the server stub. While this sounds straightforward, it is not
quite as simple as it at first appears. In this section we will look at some of the
issues concerned with parameter passing in RPC systems.

Passing Value Parameters

Packing parameters into a message is called parameter marshaling. As a
very simple example, consider a remote procedure, add(i, j), that takes two integer
parameters i and j and returns their arithmetic sum as a result. (As a practical
matter, one would not normally make such a simple procedure remote due to the
overhead, but as an example it will do.) The call to add, is shown in the left-hand
portion (in the client process) in Fig. 2-3. The client stub takes its two parameters
and puts them in a message as indicated. It also puts the name or number of the
procedure to be called in the message because the server might support several
different calls, and it has to be told which one is required.

Implementation
of add

Client OS Server OS

Client machine Server machine

Client stub

Client process Server process
1. Client call to

procedure

2. Stub builds
message

5. Stub unpacks
message

6. Stub makes
local call to "add"

3. Message is sent
across the network

4. Server OS
hands message
to server stub

Server stub
k = add(i,j) k = add(i,j)

proc: "add"
int: val(i)
int: val(j)

proc: "add"
int: val(i)
int: val(j)

proc: "add"
int: val(i)
int: val(j)

Figure 2-3. The steps involved in a doing a remote computation through RPC.

When the message arrives at the server, the stub examines the message to see
which procedure is needed and then makes the appropriate call. If the server also
supports other remote procedures, the server stub might have a switch statement
in it to select the procedure to be called, depending on the first field of the mes-
sage. The actual call from the stub to the server looks much like the original client
call, except that the parameters are variables initialized from the incoming

SEC. 2.2 REMOTE PROCEDURE CALL 73

message.
When the server has finished, the server stub gains control again. It takes the

result provided by the server and packs it into a message. This message is sent
back to the client stub, which unpacks it and returns the value to the client pro-
cedure.

As long as the client and server machines are identical and all the parameters
and results are scalar types, such as integers, characters, and Booleans, this model
works fine. However, in a large distributed system, it is common that multiple
machine types are present. Each machine often has its own representation for
numbers, characters, and other data items. For example, IBM mainframes use the
EBCDIC character code, whereas IBM personal computers use ASCII. As a
consequence, it is not possible to pass a character parameter from an IBM PC
client to an IBM mainframe server using the simple scheme of Fig. 2-3: the server
will interpret the character incorrectly.

Similar problems can occur with the representation of integers (one’s comple-
ment versus two’s complement) and floating-point numbers. In addition, an even
more annoying problem exists because some machines, such as the Intel Pentium,
number their bytes from right to left, whereas others, such as the Sun SPARC,
number them the other way. The Intel format is called little endian and the
SPARC format is called big endian, after the politicians in Gulliver’s Travels
who went to war over which end of an egg to break (Cohen, 1981). As an exam-
ple, consider a procedure with two parameters, an integer and a four-character
string. Each parameter requires one 32-bit word. Fig. 2-4(a) shows what the par-
ameter portion of a message built by a client stub on an Intel Pentium might look
like. The first word contains the integer parameter, 5 in this case, and the second
contains the string ‘‘JILL.’’

0 050 000 00

5 5 5
L LLL LLI IIJ JJ

0 0 01 1 12 2 23 3 3

4 4 4

5 50

6 6 67 7 7

(a) (b) (c)

Figure 2-4. (a) The original message on the Pentium. (b) The message after re-
ceipt on the SPARC. (c) The message after being inverted. The little numbers in
boxes indicate the address of each byte.

Since messages are transferred byte for byte (actually, bit for bit) over the net-
work, the first byte sent is the first byte to arrive. In Fig. 2-4(b) we show what the
message of Fig. 2-4(a) would look like if received by a SPARC, which numbers
its bytes with byte 0 at the left (high-order byte) instead of at the right (low-order
byte) as do all the Intel chips. When the server stub reads the parameters at
addresses 0 and 4, respectively, it will find an integer equal to 83,886,080

74 COMMUNICATION CHAP. 2

(5 × 224) and a string ‘‘JILL.’’
One obvious, but unfortunately incorrect, approach is to simply invert the

bytes of each word after they are received, leading to Fig. 2-4(c). Now the integer
is 5 and the string is ‘‘LLIJ.’’ The problem here is that integers are reversed by the
different byte ordering, but strings are not. Without additional information about
what is a string and what is an integer, there is no way to repair the damage.

Passing Reference Parameters

We now come to a difficult problem: How are pointers, or in general, refer-
ences passed? The answer is: only with the greatest of difficulty, if at all.
Remember that a pointer is meaningful only within the address space of the pro-
cess in which it is being used. Getting back to our read example discussed earlier,
if the second parameter (the address of the buffer) happens to be 1000 on the
client, one cannot just pass the number 1000 to the server and expect it to work.
Address 1000 on the server might be in the middle of the program text.

One solution is just to forbid pointers and reference parameters in general.
However, these are so important that this solution is highly undesirable. In fact, it
is not necessary either. In the read example, the client stub knows that the second
parameter points to an array of characters. Suppose, for the moment, that it also
knows how big the array is. One strategy then becomes apparent: copy the array
into the message and send it to the server. The server stub can then call the server
with a pointer to this array, even though this pointer has a different numerical
value than the second parameter of read has. Changes the server makes using the
pointer (e.g., storing data into it) directly affect the message buffer inside the
server stub. When the server finishes, the original message can be sent back to the
client stub, which then copies it back to the client. In effect, call-by-reference has
been replaced by copy/restore. Although this is not always identical, it frequently
is good enough.

One optimization makes this mechanism twice as efficient. If the stubs know
whether the buffer is an input parameter or an output parameter to the server, one
of the copies can be eliminated. If the array is input to the server (e.g., in a call to
write) it need not be copied back. If it is output, it need not be sent over in the first
place.

As a final comment, it is worth noting that although we can now handle
pointers to simple arrays and structures, we still cannot handle the most general
case of a pointer to an arbitrary data structure such as a complex graph. Some sys-
tems attempt to deal with this case by actually passing the pointer to the server
stub and generating special code in the server procedure for using pointers. For
example, a request may be sent back to the client to provide the referenced data.

SEC. 2.2 REMOTE PROCEDURE CALL 75

Parameter Specification and Stub Generation

From what we have explained so far, it is clear that hiding a remote procedure
call requires that the caller and the callee agree on the format of the messages
they exchange, and that they follow the same steps when it comes to, for example,
passing complex data structures. In other words, both sides in an RPC should fol-
low the same protocol.

As a simple example, consider the procedure of Fig. 2-5(a). It has three par-
ameters, a character, a floating-point number, and an array of five integers.
Assuming a word is four bytes, the RPC protocol might prescribe that we should
transmit a character in the rightmost byte of a word (leaving the next 3 bytes
empty), a float as a whole word, and an array as a group of words equal to the
array length, preceded by a word giving the length, as shown in Fig. 2-5(b). Thus
given these rules, the client stub for foobar knows that it must use the format of
Fig. 2-5(b), and the server stub knows that incoming messages for foobar will
have the format of Fig. 2-5(b).

foobar(char x; float y; int z[5])
{

....
}

(a) (b)

x
y

5
z[0]
z[1]
z[2]
z[3]
z[4]

foobar's local
variables

Figure 2-5. (a) A procedure. (b) The corresponding message.

Defining the message format is one aspect of an RPC protocol, but it is not
sufficient. What we also need is the client and the server to agree on the represen-
tation of simple data structures, such as integers, characters, Booleans, etc. For
example, the protocol could prescribe that integers are represented in two’s com-
plement, characters in 16-bit Unicode, and floats in the IEEE standard #754 for-
mat, with everything stored in little endian. With this additional information, mes-
sages can be unambiguously interpreted.

With the encoding rules now pinned down to the last bit, the only thing that
remains to be done is that the caller and callee agree on the actual exchange of
messages. For example, it may be decided to use a connection-oriented transport
service such as TCP/IP. An alternative is to use an unreliable datagram service
and let the client and server implement an error control scheme as part of the RPC
protocol. In practice, several variants exist.

Once the RPC protocol has been completely defined, the client and server

76 COMMUNICATION CHAP. 2

stubs need to be implemented. Fortunately, stubs for the same protocol but dif-
ferent procedures generally differ only in their interface to the applications. An
interface consists of a collection of procedures that can be called by a client, and
which are implemented by a server. An interface is generally available in the
same programming language as the one in which the client or server is written
(although this is strictly speaking, not necessary). To simplify matters, interfaces
are often specified by means of an Interface Definition Language (IDL). An
interface specified in such an IDL, is then subsequently compiled into a client
stub and a server stub, along with the appropriate compile-time or run-time inter-
faces.

Practice shows that using an interface definition language considerably sim-
plifies client-server applications based on RPCs. Because it is easy to fully gen-
erate client and server stubs, all RPC-based middleware systems offer an IDL to
support application development. In some cases, using the IDL is even mandatory,
as we shall see in later chapters.

2.2.3 Extended RPC Models

Remote procedure calls have become a de facto standard for communication
in distributed systems. The popularity of the model is due to its apparent simpli-
city. In this section, we take a brief look at two extensions to the original RPC
model that have been designed to solve some of its shortcomings.

Doors

The original RPC model assumes that the caller and callee can communicate
only by means of passing messages over a network. In general, this assumption is
correct. However, suppose that the client and server reside on the same machine.
Normally, we would make use of the local interprocess communication (IPC)
facilities that the underlying operating system offers to processes running on the
same machine. For example, in UNIX such facilities include shared memory,
pipes, and message queues (see Stevens, 1999 for a detailed discussion on IPC in
UNIX systems).

Local IPC facilities tend to be much more efficient than networking facilities,
even if the latter are used for communication between processes on the same
machine. Consequently, when performance is an issue, different interprocess
communication mechanisms may need to be combined depending on whether or
not the processes we are dealing with are located on the same machine.

As a compromise, a few operating systems offer an equivalent of RPCs for
processes that are colocated on the same machine, called doors. A door is a gen-
eric name for a procedure in the address space of a server process that can be
called by processes colocated with the server. Doors were originally designed for
the Spring operating system (Mitchell et al., 1994), and are described extensively

SEC. 2.2 REMOTE PROCEDURE CALL 77

in (Hamilton and Kougiouris 1993). A similar mechanism, called Lightweight
RPC, was developed by Bershad et al. (1990).

Calling doors requires support from the local operating system, as shown in
Fig. 2-6. In particular, the server process must first register a door before it can
be called. When registering a door, an identifier for that door is returned that can
be used to later give the door a symbolic name. Registration is done by a call to
door3create. A registered door can be made available to other processes by sim-
ply associating a name with the identifier returned when the door was registered.
For example, in Solaris, each door has a file name, which is associated with the
door’s identifier by a call to fattach. A client calls a door by means of the system
call door3call, to which it passes the identification of the door as well as any
necessary parameters. The operating system then does an upcall to the server pro-
cess that registered the door. An upcall results in an invocation of the door by the
server. The results of invoking the door are returned to the client process through
the system call door3return.

main()
{

...
fd = open(door_name, ...);
door_call(fd, ...);
...

}

server_door(...)
{

...
door_return(...);

}

main()
{

...
fd = door_create(...);
fattach(fd, door_name, ...);
...

}

Register door

Invoke registered door
at other process Return to calling process

Operating system

Server processClient process

Computer

Figure 2-6. The principle of using doors as IPC mechanism.

The main benefit of doors is that they allow the use of a single mechanism,
namely procedure calls, for communication in a distributed system. Unfortunately,
application developers still need to be aware whether a call is done local within
the current process, local to a different process on the same machine, or to a
remote process.

78 COMMUNICATION CHAP. 2

Asynchronous RPC

As in conventional procedure calls, when a client calls a remote procedure,
the client will block until a reply is returned. This strict request-reply behavior is
unnecessary when there is no result to return, and only leads to blocking the client
while it could have proceeded and have done useful work just after requesting the
remote procedure to be called. Examples of where there is often no need to wait
for a reply include: transferring money from one account to another, adding
entries into a database, starting remote services, batch processing, and so on.

To support such situations, RPC systems may provide facilities for what are
called asynchronous RPCs, by which a client immediately continues after issu-
ing the RPC request. With asynchronous RPCs, the server immediately sends a
reply back to the client the moment the RPC request is received, after which it
calls the requested procedure. The reply acts as an acknowledgement to the client
that the server is going to process the RPC. The client will continue without
further blocking as soon as it has received the server’s acknowledgement. Fig. 2-
7(b) shows how client and server interact in the case of asynchronous RPCs. For
comparison, Fig. 2-7(a) shows the normal request-reply behavior.

Call local procedure

Call remote
procedure

Return
from call

Request Accept request

Wait for acceptance

Call local procedure
and return results

Call remote
procedure

Return
from call

Client Client

Request Reply

Server ServerTime Time

Wait for result

(a) (b)

Figure 2-7. (a) The interaction between client and server in a traditional RPC.
(b) The interaction using asynchronous RPC.

Asynchronous RPCs can also be useful when a reply will be returned but the
client is not prepared to wait for it and do nothing in the meantime. For example,
a client may want to prefetch the network addresses of a set of hosts that it
expects to contact soon. While a naming service is collecting those addresses, the
client may want to do other things. In such cases, it makes sense to organize the
communication between the client and server through two asynchronous RPCs, as
shown in Fig. 2-8. The client first calls the server to hand over a list of host
names that should be looked up, and continues when the server has acknowledged
the receipt of that list. The second call is done by the server, who calls the client
to hand over the addresses it found. Combining two asynchronous RPCs is some-
times also referred to as a deferred synchronous RPC.

SEC. 2.2 REMOTE PROCEDURE CALL 79

Call local procedure

Call remote
procedure

Return
from call

Client

Request
Accept
request

Server
Time

Wait for
acceptance

Interrupt client

Return
results Acknowledge

Call client with
one-way RPC

Figure 2-8. A client and server interacting through two asynchronous RPCs.

It should be noted that variants of asynchronous RPCs exist in which the
client continues immediately after sending the request to the server. In other
words, the client does not wait for an acknowledgement of the server’s acceptance
of the request. We refer to such RPCs as one-way RPCs. The problem with this
approach is that if reliability is not guaranteed, the client cannot know for sure
whether its request will be processed. We return to these matters in Chap. 7.

2.2.4 Example: DCE RPC

Remote procedure calls have been widely adopted as the basis of middleware
and distributed systems in general. In this section, we take a closer look at one
specific RPC system: the Distributed Computing Environment (DCE), which
has been developed by the Open Software Foundation (OSF) now called The
Open Group. DCE RPC is not as popular as some other RPC systems, notably Sun
RPC. However, DCE RPC is highly representative of other RPC systems, and its
specifications have been adopted in Microsoft’s base system for distributed com-
puting. In addition, as we shall see in a later section, DCE RPC is also illustrative
for understanding the relation between RPC systems and distributed objects. We
start with a brief introduction to DCE, after which we consider the principal work-
ings of DCE RPC.

Introduction to DCE

DCE is a true middleware system in that it is designed to execute as a layer of
abstraction between existing (network) operating systems and distributed applica-
tions. Initially designed for UNIX, it has now been ported to all major operating
systems including VMS and Windows NT, as well as desktop operating systems.
The idea is that the customer can take a collection of existing machines, add the
DCE software, and then be able to run distributed applications, all without dis-
turbing existing (nondistributed) applications. Although most of the DCE package

80 COMMUNICATION CHAP. 2

runs in user space, in some configurations a piece (part of the distributed file sys-
tem) must be added to the kernel. The Open Group itself only sells source code,
which vendors integrate into their systems.

The programming model underlying all of DCE is the client-server model,
which was extensively discussed in the previous chapter. User processes act as
clients to access remote services provided by server processes. Some of these ser-
vices are part of DCE itself, but others belong to the applications and are written
by the applications programmers. All communication between clients and servers
takes place by means of RPCs.

There are a number of services that form part of DCE itself. The distributed
file service is a worldwide file system that provides a transparent way of access-
ing any file in the system in the same way. It can either be built on top of the
hosts’ native file systems or be used instead of them. The directory service is
used to keep track of the location of all resources in the system. These resources
include machines, printers, servers, data, and much more, and they may be distrib-
uted geographically over the entire world. The directory service allows a process
to ask for a resource and not have to be concerned about where it is, unless the
process cares. The security service allows resources of all kinds to be protected,
so access can be restricted to authorized persons. Finally, the distributed time
service is a service that attempts to keep clocks on the different machines globally
synchronized. As we shall see in later chapters, having some notion of global time
makes it much easier to ensure consistency in a distributed system.

Goals of DCE RPC

The goals of the DCE RPC system are relatively traditional. First and
foremost, the RPC system makes it possible for a client to access a remote service
by simply calling a local procedure. This interface makes it possible for client
(i.e., application) programs to be written in a simple way, familiar to most pro-
grammers. It also makes it easy to have large volumes of existing code run in a
distributed environment with few, if any, changes.

It is up to the RPC system to hide all the details from the clients, and, to some
extent, from the servers as well. To start with, the RPC system can automatically
locate the correct server, and subsequently set up the communication between
client and server software (generally called binding). It can also handle the mes-
sage transport in both directions, fragmenting and reassembling them as needed
(e.g., if one of the parameters is a large array). Finally, the RPC system can
automatically handle data type conversions between the client and the server,
even if they run on different architectures and have a different byte ordering.

As a consequence of the RPC system’s ability to hide the details, clients and
servers are highly independent of one another. A client can be written in Java and
a server in C, or vice versa. A client and server can run on different hardware plat-
forms and use different operating systems. A variety of network protocols and

SEC. 2.2 REMOTE PROCEDURE CALL 81

data representations are also supported, all without any intervention from the
client or server.

Writing a Client and a Server

The DCE RPC system consists of a number of components, including
languages, libraries, daemons, and utility programs, among others. Together these
make it possible to write clients and servers. In this section we will describe the
pieces and how they fit together. The entire process of writing and using an RPC
client and server is summarized in Fig. 2-9.

C compiler

Uuidgen

IDL compiler

C compiler C compiler

Linker Linker

C compiler

Server stub
object file

Server
object file

Runtime
library

Server
binary

Client
binary

Runtime
library

Client stub
object file

Client
object file

Client stubClient code Header Server stub

Interface
definition file

Server code

#include#include

Figure 2-9. The steps in writing a client and a server in DCE RPC.

In a client-server system, the glue that holds everything together is the inter-
face definition, as specified in the Interface Definition Language, or IDL. It
permits procedure declarations in a form closely resembling function prototypes
in ANSI C. IDL files can also contain type definitions, constant declarations, and
other information needed to correctly marshal parameters and unmarshal results.
Ideally, the interface definition should also contain a formal definition of what the
procedures do, but such a definition is beyond the current state of the art, so the
interface definition just defines the syntax of the calls, not their semantics. At best

82 COMMUNICATION CHAP. 2

the writer can add a few comments describing what the procedures do.
A crucial element in every IDL file is a globally unique identifier for the

specified interface. The client sends this identifier in the first RPC message and
the server verifies that it is correct. In this way, if a client inadvertently tries to
bind to the wrong server, or even to an older version of the right server, the server
will detect the error and the binding will not take place.

Interface definitions and unique identifiers are closely related in DCE. As
illustrated in Fig. 2-9, the first step in writing a client/server application is usually
calling the uuidgen program, asking it to generate a prototype IDL file containing
an interface identifier guaranteed never to be used again in any interface gen-
erated anywhere by uuidgen. Uniqueness is ensured by encoding in it the location
and time of creation. It consists of a 128-bit binary number represented in the IDL
file as an ASCII string in hexadecimal.

The next step is editing the IDL file, filling in the names of the remote pro-
cedures and their parameters. It is worth noting that RPC is not totally
transparent—for example, the client and server cannot share global variables—but
the IDL rules make it impossible to express constructs that are not supported.

When the IDL file is complete, the IDL compiler is called to process it. The
output of the IDL compiler consists of three files:

1. A header file (e.g., interface.h, in C terms).

2. The client stub.

3. The server stub.

The header file contains the unique identifier, type definitions, constant defini-
tions, and function prototypes. It should be included (using #include) in both the
client and server code. The client stub contains the actual procedures that the
client program will call. These procedures are responsible for collecting and pack-
ing the parameters into the outgoing message and then calling the runtime system
to send it. The client stub also handles unpacking the reply and returning values to
the client. The server stub contains the procedures called by the runtime system
on the server machine when an incoming message arrives. These, in turn, call the
actual server procedures that do the work.

The next step is for the application writer to write the client and server code.
Both of these are then compiled, as are the two stub procedures. The resulting
client code and client stub object files are then linked with the runtime library to
produce the executable binary for the client. Similarly, the server code and server
stub are compiled and linked to produce the server’s binary. At runtime, the client
and server are started so that the application is actually executed as well.

SEC. 2.2 REMOTE PROCEDURE CALL 83

Binding a Client to a Server

To allow a client to call a server, it is necessary that the server be registered
and prepared to accept incoming calls. Registration of a server makes it possible
for a client to actually locate the server and bind to it. Server location is done in
two steps:

1. Locate the server’s machine.

2. Locate the server (i.e., the correct process) on that machine.

The second step is somewhat subtle. Basically, what it comes down to is that to
communicate with a server, the client needs to know an endpoint, on the server’s
machine to which it can send messages. An endpoint (also commonly known as a
port) is used by the server’s operating system to distinguish incoming messages
for different processes. In DCE, a table of (server, endpoint)-pairs is maintained
on each server machine by a process called the DCE daemon. Before it becomes
available for incoming requests, the server must ask the operating system for an
endpoint. It then registers this endpoint with the DCE daemon. The DCE daemon
records this information (including which protocols the server speaks) in the end-
point table for future use.

The server also registers with the directory service by providing it the network
address of the server’s machine and a name under which the server can be looked
up. Binding a client to a server then proceeds as shown in Fig. 2-10.

Endpoint
table

Server

DCE
daemon

Client
1. Register endpoint

2. Register service3. Look up server

4. Ask for endpoint

5. Do RPC

Directory
server

Server machineClient machine

Directory machine

Figure 2-10. Client-to-server binding in DCE.

Let us assume that the client wants to bind to a video server that is locally
known under the name /local/multimedia/video/movies. It passes this name to the
directory server, which returns the network address of the machine running the
video server. The client then goes to the DCE daemon on that machine (which has

84 COMMUNICATION CHAP. 2

a well-known endpoint), and asks it to look up the endpoint of the video server in
its endpoint table. Armed with this information, the RPC can now take place. On
subsequent RPCs this lookup is not needed. DCE also gives clients the ability to
do more sophisticated searches for a suitable server when that is needed. Secure
RPC is also an option.

Performing an RPC

The actual RPC is carried out transparently and in the usual way. The client
stub marshals the parameters to the runtime library for transmission using the pro-
tocol chosen at binding time. When a message arrives at the server side, it is
routed to the correct server based on the endpoint contained in the incoming mes-
sage. The runtime library passes the message to the server stub, which unmarshals
the parameters and calls the server. The reply goes back by the reverse route.

DCE provides several semantic options. The default is at-most-once opera-
tion, in which case no call is ever carried out more than once, even in the face of
system crashes. In practice, what this means is that if a server crashes during an
RPC and then recovers quickly, the client does not repeat the operation, for fear
that it might already have been carried out once.

Alternatively, it is possible to mark a remote procedure as idempotent (in the
IDL file), in which case it can be repeated multiple times without harm. For
example, reading a specified block from a file can be tried over and over until it
succeeds. When an idempotent RPC fails due to a server crash, the client can wait
until the server reboots and then try again. Other semantics are also available (but
rarely used), including broadcasting the RPC to all the machines on the local net-
work. We return to RPC semantics in Chap. 7, when discussing RPC in the pres-
ence of failures.

