
Distributed Systems Fö 4 - 1

Petru Eles, IDA, LiTH

DISTRIBUTED HETEROGENEOUS
APPLICATIONS AND CORBA

1. Heterogeneity in Distributed Systems

2. Middleware

3. Objects in Distributed Systems

4. The CORBA Approach

5. Components of a CORBA Environment

6. CORBA Services

Distributed Systems Fö 4 - 2

Petru Eles, IDA, LiTH

Heterogeneity in Distributed Systems

☞ Distributed applications are typically heterogeneous:
- different hardware: mainframes, workstations,

PCs, servers, etc.;
- different software: UNIX, MS Windows, IBM OS/2,

Real-time OSs, etc.;
- unconventional devices: teller machines,

telephone switches, robots, manufacturing
systems, etc.;

- diverse networks and protocols: Ethernet,
FDDI, ATM, TCP/IP, Novell Netware, etc.

☞ Why?
- Different hardware/software solutions are

considered to be optimal for different parts of
the system.

- Different users which have to interact are
deciding for different hardware/software
solutions/vendors.

- Legacy systems.

Distributed Systems Fö 4 - 3

Petru Eles, IDA, LiTH

Middleware

☞ A key component of a heterogeneous distributed
client-server environment is middleware.

• Middleware is a set of services that enable
applications and end users to interact with each
other across a heterogeneous distributed system.
Middleware software resides above the network
and below the application software.

Network

Middleware Middleware Middleware Middleware

UserApplicationApplicationUser

Distributed Systems Fö 4 - 4

Petru Eles, IDA, LiTH

Middleware (cont’d)

• Middleware should make the network transparent
to the applications and end users ⇒ users and
applications should be able to perform the same
operations across the network that they can
perform locally.

• Middleware should hide the details of computing
hardware, OS, software components across
networks.

• Different kind of software qualifies, to certain
extent, as middleware:

- File-transfer packages (FTP) and email;
- Web browsers;
- CORBA

Distributed Systems Fö 4 - 5

Petru Eles, IDA, LiTH

Objects in Distributed Systems

• A distributed application can be viewed as a
collection of objects (user interfaces, databases,
application modules, customers).

Client Objects Server Objects

Object Request Broker (ORB)

Object Services

Middleware

Distributed Systems Fö 4 - 6

Petru Eles, IDA, LiTH

Objects in Distributed Systems (cont’d)

• Objects are data surrounded by code; each one
has its own attributes and methods which define
the behavior of the object; objects can be clients,
servers, or both.

• Middleware:

- Object brokers allow objects to find each other
in a distributed system and interact with each
other over a network; they are the backbone of
the distributed object-oriented system.

- Object services allow to create, name, move,
copy, store, delete, restore, and manage
objects.

• Modeling in terms of OO concepts does not
necessarily imply use of OO programming
languages for implementation or the use of OO
database managers as part of the system.

Distributed Systems Fö 4 - 7

Petru Eles, IDA, LiTH

Objects in Distributed Systems (cont’d)

If we relate to the picture in Lecture 2/3, slide 32, which
explains RMI, we can recognize some components:

• We have the client and server objects.

• We have the skeleton and proxy, which are on the
border between middleware and application.

• The communication module and the remote
reference module are part of the ORB.

☞ Additional components which are part of the
middleware:

- Object adapter
- Implementation repository
- Interface repository.

Distributed Systems Fö 4 - 8

Petru Eles, IDA, LiTH

C
lie

n
t

O
bj

ec
t A

P
ro

xy
fo

r
B

S
er

ve
r

O
bj

ec
t B

S
ke

le
to

n
fo

r
B

R
eq

ue
st

R
ep

ly

O
bj

ec
t a

da
pt

er

O
R

B
O

R
B

Im
pl

em
en

ta
tio

n
re

po
si

to
ry

In
te

rf
ac

e
re

po
si

to
ry

O
b

je
ct

s
in

 D
is

tr
ib

u
te

d
 S

ys
te

m
s

(c
o

n
t’d

)

Distributed Systems Fö 4 - 9

Petru Eles, IDA, LiTH

Interface Definition Language

☞ An interface specifies the API (Application
Programming Interface) that the clients can use to
invoke operations on objects:

- the set of operations
- the parameters needed to perform the operations.

• One or more interfaces can be defined for an
object. Such, different interfaces can be defined for
different classes of users of the same object.

• Interfaces are defined by using an interface
definition language (IDL).
CORBA IDL is an example of such a language.

Distributed Systems Fö 4 - 10

Petru Eles, IDA, LiTH

Interface Definition Language (cont’d)

☞ Middleware products (such as CORBA) provide
interface compilers that parse the IDL description of
the interface. Such a compiler produces the code
which represents:

- the classes corresponding to the proxies (in the
language of the client).

- the classes corresponding to the skeletons (in
the language of the server).

• If the client or the server are not in an object
oriented language, the compiler generates a client
stub (instead of proxy class) respectively server
stub (instead of skeleton class).

☞ IDLs are declarative languages; they do not specify
any executable code, but only declarations.

☞ IDLs should be implementation language
independent ⇒ the interface is defined independent
of the language in which the server and its clients are
implemented.

Language mappings have to be defined which allow
to compile the IDL interface and to generate proxies
and skeletons in the implementation languages of the
clients and of the server respectively.

Distributed Systems Fö 4 - 11

Petru Eles, IDA, LiTH

CORBA

☞ Object Management Group (OMG): a non-profit
industry consortium formed in 1989 with the goal to
develop, adopt, and promote standards for the
development of distributed heterogeneous
applications.

☞ One of the main achievements of OMG is the
specification of a Common Object Request Broker
Architecture (CORBA).

• The CORBA specification details the interfaces and
characteristics of the Object Request Broker; it
practically specifies the middleware functions which
allow application objects to communicate with one
another no matter where they are located, who has
designed them and in which language they are
implemented.

• OMG only provides a specification; there are
several products which, to a certain extent,
implement the OMG specification.

Distributed Systems Fö 4 - 12

Petru Eles, IDA, LiTH

CORBA (cont’d)

• Key concepts:
- CORBA specifies the middleware services

used by the application objects.

- An object can be a client, a server or both.

- Object interaction is through requests: the infor-
mation associated with a request is

1. an operation to be performed
2. a target object
3. zero or more parameters.

- CORBA supports static as well as dynamic bind-
ing; dynamic binding between objects uses run-
time identification of objects and parameters.

- The interface represents the contract between
client and server; an IDL has been defined for
CORBA; proxies and skeletons (client and
server stubs) are generated as result of IDL
compilation.

- CORBA objects do not know the underlying im-
plementation details; an object adapter maps
the generic model to a specific implementation.

Distributed Systems Fö 4 - 13

Petru Eles, IDA, LiTH

CORBA (cont’d)

Components of a CORBA environment:

Client
Application 1

Client
Application 2 Server Object

Interface
Repository Implementation

Repository

Dynamic
Invocation

Proxy
(Static)

Server
Skeleton

Object
Adapter

Object Request Broker (ORB)

Distributed Systems Fö 4 - 14

Petru Eles, IDA, LiTH

Interface and Implementation Repository

Interface Repository
• The interface repository provides a (standard) rep-

resentation of available object interfaces for all ob-
jects in the distributed environment. It corresponds
to the server objects’ IDL specification.

• The clients can access the interface repository to
learn about the server objects, determine the types
of operations which can be invoked and the
corresponding parameters. This is used for
dynamic invocation of objects.

Implementation Repository
• Implementation details for the objects implementing

each interface are stored in the implementation
repository:

- the main information is a mapping from the ser-
ver object’s name to the file name which imple-
ments the respective service;

- there is information concerning the object meth-
ods and information needed for method selection.

• Information stored in the implementation repository
can be specific to the operating system running on
the respective server object’s computer.

• The representation in the implementation repository
can be specific for a certain CORBA implementation.

• The implementation repository is used by the object
adapter in order to solve an incoming call and acti-
vate the right object method (via a server skeleton).

Distributed Systems Fö 4 - 15

Petru Eles, IDA, LiTH

The Object Request Broker (ORB)

ORB and its interfaces:

Dynamic
Invocation Proxy

Server
Skeleton Object

Adapter

Object Request Broker (ORB)

ORB
Interface

Client Server Object

ORB implementation dependent interface

Interface identical for all ORB implementations

Proxies and skeletons for each server interface

Distributed Systems Fö 4 - 16

Petru Eles, IDA, LiTH

The Object Request Broker (cont’d)

☞ The ORB, through its interfaces, provides
mechanisms by which objects transparently interact
with each other.

• Issuing of a request from a client can be dynamic or
static; it is performed through the proxies (client
stubs) or the dynamic invocation interface.

• Invocation of a specific server method is performed
by the server skeleton which gets the request
forwarded from the object adapter.

• The ORB interface can be accessed also directly
by clients and object implementations for certain
services: e.g. directory services, services
connected to naming, manipulation of object
references.

Distributed Systems Fö 4 - 17

Petru Eles, IDA, LiTH

Static and Dynamic Invocation

☞ CORBA allows both static and dynamic invocation of
objects. The choice is made depending on how much
information, concerning the server object, is available
at compile time.

Static Invocation
• Static invocation is based on compile time knowl-

edge of the server’s interface specification. This
specification is formulated in IDL and is compiled
into a proxy (client stub), corresponding to the pro-
gramming language in which the client is encoded.

• For the client, an object invocation is like a local
invocation to a proxy method. The invocation is
then automatically forwarded to the object
implementation through the ORB, the object
adapter and the skeleton.

• Static invocation is efficient at run time, because of
the relatively low overhead.

Distributed Systems Fö 4 - 18

Petru Eles, IDA, LiTH

Static and Dynamic Invocation (cont’d)

Dynamic Invocation

• Dynamic invocation allows a client to invoke
requests on an object without having compile-time
knowledge of the object’s interface.

• The object and its interface (methods, parameters,
types) are detected at run-time. CORBA provides,
through the dynamic invocation interface, the
mechanisms in order to inspect the interface
repository, to dynamically construct invocations and
provide argument values corresponding to the
server’s interface specification.

• Once the request has been constructed and
arguments placed, its invocation has the same
effect as a static invocation.

• The execution overhead of a dynamic invocation is
huge.

• From the server’s point of view, static and dynamic
invocation are identical; the server does not know
how it has been invoked.
The server invocation is always issued through its
skeleton, generated at compile time from the IDL
specification.

Distributed Systems Fö 4 - 19

Petru Eles, IDA, LiTH

The Basic Object Adapter

☞ The object adapter (OA) is the primary interface
between the server object implementation and the
ORB.

Services provided by the OA:
• Object registration: OA provides operations by

which certain entities, specified in a given
programming language, are registered as CORBA
objects.

• Object reference generation: OA generates object
references to CORBA objects.

• Object upcalls: OA dispatches incoming requests to
the corresponding registered objects.

• Server process and object activation: if needed, OA
starts up server processes and activates objects as
result of incoming invocations.

Distributed Systems Fö 4 - 20

Petru Eles, IDA, LiTH

Other CORBA Services

These services, and others, have been specified by the
CORBA documents; current products implement only
some of them.

☞ Naming and Trading Services:
• The basic way an object reference is generated is at

creation of the object when the reference is returned.
• Object references can be stored together with

associated information (e.g. names and properties).
• The naming service allows clients to find objects

based on names.
• The trading service allows clients to find objects

based on their properties.
☞ Transaction Management Service: provides two-

phase commit coordination among recoverable
components using transactions.

☞ Concurrency Control Service: provides a lock
manager that can obtain and free locks for
transactions or threads.

☞ Security Service: protects components from
unauthorized users; it provides authentication,
access control lists, confidentiality, etc.

☞ Time Service: provides interfaces for synchronizing
time; provides operations for defining and managing
time-triggered events.

- -

Distributed Systems Fö 4 - 21

Petru Eles, IDA, LiTH

Inter-ORB Architecture

☞ Implementations of ORBs differ from vendor to
vendor ⇒ how do we solve interaction between
objects which are running on different CORBA
implementations?

• General Inter-ORB Protocol (GIOP): GIOP is de-
fined in CORBA 2.0; it specifies a set of message
formats and common data representations for inter-
actions between ORBs and is intended to operate
over any connection oriented transport protocol.

• Internet Inter-ORB Protocol (IIOP): IIOP is a
particularization of GIOP; it specifies how GIOP
messages have to be exchanged over a TCP/IP
network.

Client&Server
Objects

ORB_2ORB_1

Client&Server
Objects

GIOP/IIOP

Distributed Systems Fö 4 - 22

Petru Eles, IDA, LiTH

Summary

• Distributed systems are typically heterogeneous.
Middleware is the set of services which enable the
components to interact with each other without
taking notice of the distributed and heterogeneous
character of the environment.

• The API visible for the user of a service is defined
in an IDL. The IDL compiler generates proxies and
skeletons (client and server stubs). IDLs should be
implementation language independent.

• CORBA is the OMGs specification for an Object
Request Broker (ORB). Several vendors provide
different (partial) implementations consistent with
this specification.

• The ORB, through its interfaces, provides
mechanisms by which objects transparently interact
with each other.

• Objects in CORBA can be invoked statically and
dynamically. Static invocation is based on compile
time knowledge of the server’s interface
specification. Dynamic invocation allows a client to
invoke requests on an object without having
compile-time knowledge of the object’s interface.

• The object adapter is the interface between the
object implementation and the ORB. It provides
services for registration of objects and their
activation.

• CORBA 2.0 defines protocols for interaction
between ORBs implemented by different vendors.

Distributed Systems Fö 4 - 23

Petru Eles, IDA, LiTH

PEER-TO-PEER SYSTEMS

1. Characteristics of Peer-to-Peer Systems

2. The Napster File System

3. Peer -to-Peer Middleware

Distributed Systems Fö 4 - 24

Petru Eles, IDA, LiTH

Basic Characteristics

☞ Main characteristics of peer-to-peer systems:

• Each user contributes resources to the system.
• All the nodes have the same functional capabilities

and responsibilities (although they may differ in the
resources they contribute).

• Correct operation does not depend on the existence
of any centrally-administered system.

☞ Key issues:
• Choice of strategy for

- the placement of data and their replica across
many hosts;

- the access to data.
Such that

- workload of nodes and communication lines is
balanced;

- availability of data is provided.

☞ Anonymity of providers and users is offered (at least to
a certain degree).

Distributed Systems Fö 4 - 25

Petru Eles, IDA, LiTH

Why Do We Need It?

☞ If only particular servers which are centrally
managed, can provide services/data, then scalability
is limited:

• server capacity
• network bandwidth provided to a server

☞ To avoid the scaling problem
• Peer-to-peer systems use the data and computing

resources available in the personal computers and
workstations present on the Internet and other
networks.

• Instead of separately managed servers, services
are provided by all these resources together.

☞ Important!
• Availability of individual processes/computers in a

peer-to-peer system is unpredictable

Services cannot rely on guaranteed access to a host.

• Availability can be improved by replication on
several hosts.

Distributed Systems Fö 4 - 26

Petru Eles, IDA, LiTH

The Evolution of Peer-to-Peer Systems

First Generation:
Napster (1999)

Second Generation:
Freenet (2000)
Gnutella (2000)
Kazaa (2001)
BitTorrent (2002-2003)

Third Generation
Peer-to-Peer Middleware

☞ The index is centralised!

☞ Only semi-centralised or
completely distributed.

☞ Better anonymity,
scalability, fault tolerance.

☞ Platforms for application-
independent management
of distributed resources.

☞ Used to implement peer-
to-peer applications.

Distributed Systems Fö 4 - 27

Petru Eles, IDA, LiTH

The Napster File Sharing System

☞ Napster provides a globally-scalable information
storage and retrieval service for digital music files.

☞ Napster was the first to demonstrate the feasibility of
a peer-to-peer solution on large scale.

☞ Napster, as an open service, was shut down July
2001, as result of lawsuits on copyright issues.

Distributed Systems Fö 4 - 28

Petru Eles, IDA, LiTH

The Napster File Sharing System (cont’d)

Step 1: File location request;
Step 2: List of peers offering the files;
Step 3: File request;
Step 4: File loading;
Step 5: Index update (user adds own files to pool of

shared resources).

peers

Network

Napster server
with indexes

Napster server
with index backups

1
2

5

3

4

Distributed Systems Fö 4 - 29

Petru Eles, IDA, LiTH

The Napster File Sharing System (cont’d)

☞ Napster uses a centralised index (with replicas for
increased availability).

☞ The whole pool of files is distributed over the
personal computers of the peers.

☞ In order to achieve load balancing:

• When creating and sending the list of peers offering
the file (step 2), Napster takes into account locality
(the distance between the requesting client and the
potential servers).

Distributed Systems Fö 4 - 30

Petru Eles, IDA, LiTH

Problems with Napster

☞ Centralised index:
• Scaling problem (server capacity and network

bandwidth).
• Anonymity of operators is not possible: for example,

legal responsibility for copyright issues can be put
on operators maintaining the central index.

☞ A completely distributed index can both provide
better scaling and anonymity.

☞ Napster did not provide particular solutions for
consistency of replica updates or for guaranteed
availability. This was no problem because of the
particular application, music files:

• Music files are immutable (they don’t change after
being created) ⇒ there is no need to maintain
replicas consistent.

• If a file is unavailable at a certain moment it can be
downloaded later.

☞ Second generation systems (see slide 26) have tried
to solve the above problems by applying various
specific, ad hoc solutions.

Distributed Systems Fö 4 - 31

Petru Eles, IDA, LiTH

Peer-to-Peer Middleware

• Peer-to-peer middleware systems provide a support
for the implementation of distributed services that are
located across many hosts in a widely distributed
network.

• They provide a programming interface to application
programmers for the implementation of peer-to-peer
applications.

• No completely mature commercial products yet
available.

Distributed Systems Fö 4 - 32

Petru Eles, IDA, LiTH

Peer-to-Peer Middleware (cont’d)

☞ The main function of peer-to-peer middleware:
• automatic placement, replication and subsequent

location of distributed objects managed by the
peer-to-peer systems.

☞ Functionality supported:
• add and remove hosts to/from the system;
• add and remove resources (objects) to/from the

systems;
• allow clients to locate any individual resource made

available and communicate with it.

Distributed Systems Fö 4 - 33

Petru Eles, IDA, LiTH

Requirements for Peer-to-Peer Middleware

☞ Scalability

• Exploit the hardware resources of a very large
number of hosts.

• Support applications with millions of objects located
on tens/hundreds of thousands of hosts.

☞ Load balancing: balanced distribution of workload
among computers and network links.

• Random placement of resources.
• Use of replicas for heavily-used resources.

☞ Optimization of interaction: the distance between
nodes that interact affects the response time and the
load of the network.

• Resources should be placed close to nodes that
access them the most.

Distributed Systems Fö 4 - 34

Petru Eles, IDA, LiTH

Requirements for Peer-to-Peer Middleware (cont’d)

☞ Adaptation to dynamic host availability: computers
can whenever join the system or leave it.

• Provide a dependable service despite the
unpredictable availability of the infrastructure.

• When a host joins the system the resources
provided are integrated and the load redistributed.

• When a host leaves the system, the load and
resources are redistributed.

• Systematic replication of objects for availability

☞ Security

• Proper authentication and encryption mechanisms
to ensure integrity and privacy.

☞ Anonymity, deniability, resistance to censorship

• Keep anonymity of holders and recipients of data;
• Plausible denial of responsibility for holding/

supplying data.

Distributed Systems Fö 4 - 35

Petru Eles, IDA, LiTH

Summary

• Peer-to peer systems are a possible solution for the
scaling problems with traditional client-server
systems.

• Scaling in peer-to-peer systems is solved by
exploiting the resources available on the personal
computers and workstations available in the
network, instead of using dedicated and centrally
maintained servers.

• Napster has been the first widely used peer-to-peer
system. While the pool of files is completely
distributed over the personal computers of the
hosts, Napster is still using a centralised index. This
has consequences with regard to both scaling and
anonymity.

• Peer-to-peer middleware is supporting the
implementation of peer-to-peer applications. They
provide automatic placement, replication, and
location of objects in the peer-to-peer systems.

• Peer-to-peer systems are highly efficient to store
and manage very large amounts of objects which
are immutable (they don’t change after being
created) or which only rarely are updated.

