FP-Growth Algorithm,
Rule Generation & Evaluation

ITCS 6163/8163
UNCC, Spring 2010

Outline

e Association rules & mining

e Finding frequent itemsets Last
— Apriori algorithm
— Compact representations of frequent itemsets
— Alternative discovery methods
— FP-Growth algorithm

e Generating association rules Today

e Evaluating discovered rules

FP-Growth Algorithm: Key ldeas

e Limitations of Apriori (or generate-and-test paradigm)

— Need to consider a large number of candidates (e.g., 1K frequent
1-itemsets < ~1M 2-itemset candidates)

— Need to scan the database many times (once each iteration)

e FP-Growth (frequent pattern growth)
— Does not generate candidates
— Typically just need to scan database twice

FP-Growth Algorithm

. Why this order?
1. Build FP-Tree Y
— Scan database to discover frequent 1-itemsets

Set the order of items in the transaction as the order of
decreasing support, e.g., A, B, C, D (s(A) >s(B) > ...)
Scan database again to build a compact representation of
transactions in form of FP-Tree

2. Discover frequent itemsets using FP-Tree
— Recursively find frequent itemsets with common suffix, ending
with items having lower support first

- E.g., finding itemsets ending with D, C, B, A, ...

Why lower support first?

Why Order Items in Decreasing Support?

e So that transactions start with high-support items
— Many transactions tend to share common prefix
— Smaller branching factors, less bushy
= Smaller tree (with fewer nodes)

o But this is just a heuristics & might not always work

— Exercise: find an example where ordering items by increasing
support produces smaller tree

Why Suffixes with Low Support First?

e Reverse order of items: D, C, B, A
— Find all frequent itemsets ending w/ D, then C, B, and A
e More opportunities for pruning
— If D has lower support than C, it is more likely to be pruned

— If Dis pruned, all its descendants can be pruned & D has more
descendants than C

Depth-First Traversal by FP-Algorithm

o Find all frequent itemsets ending w/ D, then C, B, and A
— To find frequent itemsets ending w/ D, check if D is frequent; if
yes, find frequent itemsets ending w/ CD, BD, and AD
— To find frequent itemsets ending w/ CD, check if CD is frequent,
if yes, find frequent itemsets ending w/ BCD and ACD

Indicating order
itemsets are checked

All itemsets with suffix D

Determine Item Order

e Minimum support count = 2
e Scan database to find frequent 1-itemsets
— s(A)=8,s(B)=7,s(C)=5,5s(D)=5,s(E)=3
e Item order (decreasing support): A, B, C, D, E

=]
5]

Items
{AB}
{B.C,D}
{A.C,D,E}
{AD,E}
{AB.C}
{A,B,C,D}
A
{AB,C}
{A,B,D}
{B,C,E}

© N OA®WNR

=
o

FP-Tree: Nodes & Paths

e Node = item, each transaction mapped to a path

e Consider node X whose path from rootis p = I l,...1I,
— Count associated with X = # of transactions with prefix p

Items
{AB} null
{B,C.D}
{A.C,D,E}
{AD,E}
{AB,C}
{AB,C,D} B:
A}
{AB,C} Tree after reading 1%t
{AB,D} transaction
{B,C,E}

= =
S ©ONOUAWN RS

FP-Tree: Node Links

e Nodes for the same item at different paths are connected
via node links, to speed up computation of support counts

=l
(5]

Items
{AB}
{B,C,D}
{A,.C,D,E}
{AD,E}
{AB,C}
{AB,C,D}
{A}
AB,C :
iA,B,D; Node link O bt
{B,C.E}

©®~NONWN R

i
o

After reading 2" transaction

Storing Transactions with Common Prefix

e Note the shared path for 15t & 34 transaction

-
= =1
o © @ No v AwN RS

>

@

a

A

After reading the first 3 transactions

Complete FP-Tree for Sample Transactions

=]
(5]

Items
{AB}
{B.C.D}
{AC.DE}
{AD,E}
{AB.C}
{AB.CD}
A
{AB.C}
{AB.D}
{B.CE}

©®NO G0N

=
5]

Header table
Item | Pointer

mo o>

Pointers to speed up lookup

Discover Frequent Itemsets w/ FP-Tree

e T for discovering all frequent itemsets, T(E) for
discovering all frequent itemsets ending with E, ...

,,,,,,,,,,,,,,,,,,,,, T: complete FP-Tree

,,,,,,, T(E): conditional
FP-Tree for suffix E

""" T(DE)

KX <---T(kX)

Nemom? k: first item in new suffix

13

Obtaining Conditional FP-Trees

e Obtain T(kX) from T(X): conditional FP-Tree for suffix X
— Obtain T'(kX) from T(X) by retaining only paths ending with k
— Compute support count of k. If k is infrequent, stop & backtrack
— Update counts in T’ to consider only paths ending with k
— Remove leaf nodes (k's)
— Remove nodes with insufficient support

X «--T(X)

KX 4---T(kX)

Example: Obtain T(E) from T

e Use header table to find the first path ending with E, find
rest by following node links

Header table

Item | Pointer

mooOw>»

Retain Only Prefix Paths

e Obtain T’ from T by retaining only paths ending with E
— These paths are often called prefix paths

Determine if E is Frequent

e Support count of E = sum of counts of all E nodes
— suppose minimum support count is 2
— support count of E = 3, so E is frequent

Update Counts

e Counts for internal nodes may not be correct
— due to removal of paths which do not have E's
— & including the count for paths not ending with E

Path BCD was removed,

A8 B:2 so 2 is not correct anymore
A o~
x .

8 is wrong

c1
D1

) E:1

Update Counts

e Start from leaves, going upward
— if node X has only one child Y, count of X = count of Y
— otherwise, count of X = sum of counts of X’s children

) E:1

Remove E Nodes

e E nodes can now be removed
— counts of internal nodes have been updated
— not needed for solving: DE, CE, ...

Remove Nodes with Insufficient Support

e If sum of counts of all X nodes < minimum support count,
remove X nodes, since XE can not be frequent

null

Remove B A2

T(E): conditional FP-Tree for suffix E

21

Current Position in Processing

®, Sub-tree for suffix E turned ints
conditional FP-Tree for suffix H
« counts updated

« leaves (E’s) removed

« infrequent itemsets pruned

Current Position in Processing

b
FP-Tree

Conditional FP-Tree for suffix E
then used to solve DE, CE, BE, AE
similarly as FP-Tree used to solve
E,D,C,B A

\

Obtain T(DE) from T(E)

e Retaining only prefix paths ending with D

null

A2

ci1 Q D1

o) D:1

T(E): conditional FP-Tree for suffix E T'(DE)

Determine if DE is Frequent

e Support count of DE = 2 (sum of counts of all D’s)
— DE is frequent, need to solve: CDE, BDE, ADE if they exist

ci1 Q D1

A2

T'(DE)

Current Position of Processing

®,
FP-Tree
@, .
(Obtain T(DE), ready

’ s, tosolve CDE, BDE, ADE

Preparing for Solving CDE, BDE, ADE

null
null

A2 « update count A-2
« remove leaves

prune infrequent
itemset:
emsets Ao

¢l Q b1 c1 T(DE)

YD1

T'(DE)

Solving CDE, BDE, ADE

e Sub-trees for both CDE and BDE are empty
— no prefix paths ending with C or B
e Working on ADE

null
null

A2 ‘ A2

T'(ADE): sub-tree

T(DE): conditional FP-Tree
for suffix ADE

for suffix DE

e ADE (support count = 2) is frequent
— but no more subproblem for ADE, backtrack
— & no more subproblem for DE, backtrack
-> solving next subproblem CE

Current Position in Processing

P
FP-Tree

Solving suffix CE

Empty tree
atnode 4, 5

BGD All itemsets with suffix
~ ~-t CDE, BDE are pruned

Solving for Suffix CE

O 0

A2 .
A2
C1 T
c:1

O ‘ : ‘ Empty tree
C1 D:1
~

Cl Conditional FP-Tree
for suffix CE

)D:1 Sub-tree for suffix CE

Conditional FP-Tree for suffix E

e CE is frequent (support count = 2)

e No more subproblems for CE (empty conditional FP-Tree,

why?), so done with CE
e Work on next subproblems: BE (no support), AE

30

Current Position in Processing

@,
, FP-Tree®
@,

Working on suffix AE

common suffix E

Solving for Suffix AE

Az 'O null
C1
X Empty tree
c1 Op1 =D Ay =
7 Conditional FP-Tree
for suffix AE
OlD'l Sub-tree for suffix AE

T(E): conditional FP-Tree for suffix E

e AE is frequent (support count = 2)
e Done with AE, backtrack; done with E, backtrack
e Work on next subproblem: suffix D

32

Current Position in Processing

Found Frequent Itemsets with Suffix E

e E, DE, ADE, CE, AE discovered in this order

Working on suffix D

Outline

e Association rules & mining

e Finding frequent itemsets
— Apriori algorithm
— Compact representations of frequent itemsets
— Alternative discovery methods
— FP-Growth algorithm

e Generating association rules S

e Evaluating discovered rules

Rule Generation

e Given a frequent itemset X, find all non-empty
subsets Y < X such that Y — X — Y satisfies the
minimum confidence requirement

— If X ={A,B,C,D}, we have these candidate rules:

ABC —D, ABD —C, ACD —B, BCD —A,
A —BCD, B »ACD, C —»ABD, D —»ABC
AB —CD, AC - BD, AD — BC, BC —AD,
BD —AC, CD —AB,

o If [X| =k, then there are 2k — 2 candidate
association rules (ignoring X - & and & — X)

36

Rule Generation

e How to efficiently generate rules from frequent itemsets?

e Recall that support is anti-monotonic:
— Support of an itemset never exceeds support of its subset
— E.g., s(ABCD) < s(ABD)

e But in general, confidence is not anti-monotonic
— e.g., c(ABC —D) can be larger or smaller than ¢(AB —D). Why?

o(ABCD) x5, py— Z(ABD)

¢(ABC — D) =
o(ABC) o (AB)

Rule Generation

e But confidence of rules generated from the same itemset
has an anti-monotone property
- E.g., X={A,B,C,D}, ¢(BCD — A) > ¢(CD — AB) > ¢(D — ABC)

o(ABCD) _ o(ABCD) _ o(ABCD)
o(BCD) o(CD) o(D)

e Confidence is anti-monotonic w.r.t. the number of items
on the right-hand side of the rule
— More items on the right = lower/equal confidence

e Or monotonic w.r.t. the number of items on left-hand side
— More items on the left = larger/equal confidence

38

Rule Generation for Apriori Algorithm

Lattice of rules

Low -~

Confideyfce RS N
Rule
1

Rules

Rule Generation for Apriori Algorithm

e Candidate rule is generated by merging two rules
that share the same prefix
in the rule consequent

e Merge(CD->AB,BD>AC)
would produce the candidate
rule D > ABC

D=>ABC
e Prune rule D>ABC if its -

subset AD->BC does not have
high confidence

40

Outline

e Association rules & mining

e Finding frequent itemsets
— Apriori algorithm
— Compact representations of frequent itemsets
— Alternative discovery methods
— FP-Growth algorithm

e Generating association rules

e Evaluating discovered rules <—

Pattern Evaluation

e Algorithm might produce a large number of rules
— Many of which are not “interesting”

e Original formulation of association rules
— Based on support & confidence threshold
— But sometimes high confidence rules are interesting

e Additional interestingness measures may be used to
further prune/rank discovered rules
— Lift
— Cosine
— Jaccard coefficient

a2

Computing Interestingness Measure

e Given arule X — Y, information needed to compute rule
interestingness can be obtained from a contingency table

Contingency table for X > Y

R f,,: support count of X and Y
X fn fio fia f,o: support count of X and Y
X for T f, fo: support count of X and Y
f f m fyo: support count of X and Y

Used to define various measures

Transaction does not " . .
contain X + support, confidence, lift, cosine,

Jaccard coefficient, etc

Computing Interestingness Measure

e Given arule X — Y, information needed to compute rule
interestingness can be obtained from a contingency table

Contingency table for X > Y

X fu fio fi.
f

X1
o
2

—
S
8

o | I confidence (X — Y)

ZoXUY) _POCY) iy
T oo(X) P(X)
=11/ (fy +f10)
=f, /.

Drawback of Confidence

Coffee | Coffee

Tea | 15 5 20
Tea 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75, P(Coffee) = 0.9 > .75
=> Drinking tea actually decreases probability of drinking coffee

=> Although confidence is high, rule is misleading

Computing Interestingness Measure

e Given arule X — Y, information needed to compute rule
interestingness can be obtained from a contingency table

Contingency table for X — Y

Y Y
X fll le fl+
X for foo fo confidence (X - Y)
f) fio ul :U(XUY):P(X,Y):P(YIX)

a(X) P(X)
based on P(X,Y) & P(X), but
also need to consider P(Y)

= need to measure correlation of X & Y

a6

Measuring Correlation

e Population of 1000 students
— 600 students know how to swim (S)
— 700 students know how to bike (B)
— 420 students know how to swim and bike (S,B)

— P(SAB) = 420/1000 = 0.42
— P(S) x P(B) = 0.6 x 0.7 = 0.42

— P(SAB) = P(S) x P(B) => Independent
— P(SAB) > P(S) x P(B) => Positively correlated
— P(SAB) < P(S) x P(B) => Negatively correlated

Measuring Correlation

e Population of 1000 students
— 600 students know how to swim (S)
— 700 students know how to bike (B)
— 420 students know how to swim and bike (S,B)

P(BIS) _ P(S.B)

RSB =" @) = p(s)p(e)

— P(SAB) = P(S) x P(B) 2 lift =1 = S & B independent
— P(SAB) > P(S) x P(B) = lift > 1 =» positive-correlated
— P(SAB) < P(S) x P(B) = lift <1 = negative-correlated

a8

Measures on Correlation

Computing Lift from Contingency Table

e The larger the value, usually the more likely the
two variables/events are correlated

Liﬂ(xly)zw
P(X)P(Y)
- 800
Cosine(X,Y) = PP Q
Jaccard (X,Y) = P(X.Y)
P(X)+P(Y)-P(X,Y)
... many others

29

Y Y
X fiy fio fir
7 fOl fOD fD*
| e | N
Lift(X,Y)
_OP(XY) T Nfa

T POOP(Y) T TELT T s

50

Lift Example

Coffee | Coffee
Tea 15 5 20
Tea | 75 5 80
90 10 100

Association Rule: Tea — Coffee

Confidence= P(Coffee|Tea) = 0.75
but P(Coffee) = 0.9
= Lift = 0.75/0.9= 0.8333 (< 1, therefore negatively associated)

Drawback of Lift

Y Y Y v
X 10 0 10 X 90 0 90
X 0 90 | 90 X 0 10 | 10
10 90 | 100 90 10 | 100
. 0.1 0.9
Lift=——=——-=10 Lift=—— =111
(0.1)(0.2) (0.9)(0.9)
X & Y seldom co-occur X & Y frequently co-occur

Confidence might be better in this case (both have confidence 1)

52

Compute Cosine from Contingency Table

e Image X, Y are binary vectors

— lts i-th position = 1, if X occur in i-th transaction

\ Y
X f11 f10 f1+
7 fDl fDD fu+
fa f.o N
Cosine(X,Y)
fu S pxy)

T nR | T R T ROOPM)

Cosine vs. Lift

Y Y

fu fio fie
for foo f
fi fio N

Cosine(X,Y):JP(x,Y) _ fu

P(X)P(Y) ~ ffifa

Lift(X,Y) = 20— _Nfu

POXOPY) — fifa

x| x

« If X and Y are independent, lift(X,Y) = 1,
but Cosine(X,Y) =/P(X)P(Y)

* Cosine does not depend on N (& fy,), unlike Lift

Computing Jaccard Coefficient

1
gt
g
8

o+

Jaccard (X,Y)

_ P(X.Y) . f1
T P(X)+P(Y)-P(X)Y) T fut+fio+fo

Property under Null Addition

e Add more transactions that do not have X or Y

Y v Y v
X fiy fio fir ,—> X fiy fio fir
X for foo for X for fots | forts

fa fio N fa fiors| N+ts

Invariant measures:
< confidence, Cosine, Jaccard, etc
Non-invariant measures:

< support, lift, etc

56

Property under Variable Permutation

w = [>

=[O
» o |m]

md

Does M(A,B) = M(B,A)?
If yes, M is symmetric; otherwise asymmetric

For example, c(A>B) = c(B>A)?

>[|>
ool o
=i

_oAVB) -

c(A—>B)
o(A) o(B)

o(BUA)

Property under Variable Permutation

=[O
[Z Q=N (vs]]
o |= >

— |

Does M(A,B) = M(B,A)?
If yes, M is symmetric; otherwise asymmetric
lift(A>B) = lift(B>A)?

>|>
||

lift(A—> B) :% lift(B — A) = %

58

Property under Variable Permutation

>
o |= >

ali=]
» o ||
(seJ]{vs]
k=]

—) |
|
Does M(A,B) = M(B,A)?

If yes, M is symmetric; otherwise asymmetric

>/ >

Symmetric measures:
+ support, lift, Cosine, Jaccard, etc
Asymmetric measures:

+ confidence, etc

Applying Interestingness Measures

>
o |= B>

Eli=]
» o o)

—) I

> >
(sa]i{oy]
o

Association rule (A->B) directional
+ confidence (asymmetric) is intuitive
+ but confidence does not capture correlation

=>» Use additional measures such as lift to rank
discovered rules & further prune those with low ranks

60

References

e Introduction to Data Mining by Pang-Ning Tan,
Michael Steinbach, and Vipin Kumar. Addison-
Wesley, 2006.

— Chapter 6

