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Outline

Association rules & mining

Finding frequent itemsets
– Apriori algorithm 
– Compact representations of frequent itemsets
– Alternative discovery methods 
– FP-Growth algorithm

Generating association rules

Evaluating discovered rules
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time

Today
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FP-Growth Algorithm: Key Ideas

Limitations of Apriori (or generate-and-test paradigm)
– Need to consider a large number of candidates (e.g., 1K frequent

1-itemsets ~1M 2-itemset candidates)
– Need to scan the database many times (once each iteration)

FP-Growth (frequent pattern growth)
– Does not generate candidates
– Typically just need to scan database twice
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FP-Growth Algorithm

1. Build FP-Tree
– Scan database to discover frequent 1-itemsets
– Set the order of items in the transaction as the order of 

decreasing support, e.g., A, B, C, D (s(A) > s(B) > …)
– Scan database again to build a compact representation of 

transactions in form of FP-Tree

2. Discover frequent itemsets using FP-Tree
– Recursively find frequent itemsets with common suffix, ending 

with items having lower support first
– E.g., finding itemsets ending with D, C, B, A, …

Why this order?

Why lower support first?
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Why Order Items in Decreasing Support?

So that transactions start with high-support items
– Many transactions tend to share common prefix
– Smaller branching factors, less bushy

Smaller tree (with fewer nodes)

But this is just a heuristics & might not always work
– Exercise: find an example where ordering items by increasing 

support produces smaller tree
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Why Suffixes with Low Support First?

Reverse order of items: D, C, B, A
– Find all frequent itemsets ending w/ D, then C, B, and A

More opportunities for pruning
– If D has lower support than C, it is more likely to be pruned
– If D is pruned, all its descendants can be pruned & D has more 

descendants than C
null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

Item order: 
A, B, C, D
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Depth-First Traversal by FP-Algorithm

Find all frequent itemsets ending w/ D, then C, B, and A  
– To find frequent itemsets ending w/ D, check if D is frequent; if 

yes, find frequent itemsets ending w/ CD, BD, and AD
– To find frequent itemsets ending w/ CD, check if CD is frequent,

if yes, find frequent itemsets ending w/ BCD and ACD
– …

All itemsets with suffix D

null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

1
Indicating order 

itemsets are checked

2

3

4

5

Item order: 
A, B, C, D
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Determine Item Order

Minimum support count = 2
Scan database to find frequent 1-itemsets

– s(A) = 8, s(B) = 7, s(C) = 5, s(D) = 5, s(E) = 3

Item order (decreasing support): A, B, C, D, E 

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}
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FP-Tree: Nodes & Paths

Node = item, each transaction mapped to a path
Consider node X whose path from root is p = I1I2…Ik

– Count associated with X = # of transactions with prefix p

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

Tree after reading 1st

transaction
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FP-Tree: Node Links

Nodes for the same item at different paths are connected 
via node links, to speed up computation of support counts

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

B:1

C:1

D:1
Node link

After reading 2nd transaction
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Storing Transactions with Common Prefix

Note the shared path for 1st & 3rd transaction

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:2

B:1

B:1

C:1

D:1

C:1

D:1

E:1

After reading the first 3 transactions
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Complete FP-Tree for Sample Transactions

null

A:8

B:5

B:2

C:2

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Pointers to speed up lookup

D:1
E:1

Item Pointer
A
B
C
D
E

Header table
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Discover Frequent Itemsets w/ FP-Tree

T for discovering all frequent itemsets, T(E) for 
discovering all frequent itemsets ending with E, … 

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

common suffix E

T: complete FP-Tree

T(E): conditional 
FP-Tree for suffix E

T(DE)

X

kX

T(X)

T(kX)

k: first item in new suffix
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Obtaining Conditional FP-Trees

Obtain T(kX) from T(X): conditional FP-Tree for suffix X
– Obtain T’(kX) from T(X) by retaining only paths ending with k
– Compute support count of k. If k is infrequent, stop & backtrack
– Update counts in T’ to consider only paths ending with k
– Remove leaf nodes (k’s) 
– Remove nodes with insufficient support

X

kX

T(X)

T(kX)
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Example: Obtain T(E) from T

Use header table to find the first path ending with E, find 
rest by following node links

null

A:8

B:5

B:2

C:2

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

D:1

E:1

A:8

B:5

C:3

D:1

D:1

Item Pointer
A
B
C
D
E

Header table
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Retain Only Prefix Paths

Obtain T’ from T by retaining only paths ending with E
– These paths are often called prefix paths

E:1

null

A:8 B:2

C:2
C:1

D:1

D:1

E:1

E:1

A:8

null

A:8

B:5

B:2

C:2

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

D:1

E:1

A:8

B:5

C:3

D:1

D:1
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Determine if E is Frequent

Support count of E = sum of counts of all E nodes
– suppose minimum support count is 2
– support count of E = 3, so E is frequent

null

A:8 B:2

C:2C:1

D:1

D:1

E:1

E:1

A:8

E:1
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Update Counts

Counts for internal nodes may not be correct
– due to removal of paths which do not have E’s
– & including the count for paths not ending with E

null

A:8 B:2

C:2C:1

D:1

D:1

E:1

E:1

A:8

E:1

Path BCD was removed,
so 2 is not correct anymore

8 is wrong
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Update Counts

Start from leaves, going upward
– if node X has only one child Y, count of X = count of Y
– otherwise, count of X = sum of counts of X’s children

null

A:2 B:1

C:1C:1

D:1

D:1

E:1

E:1
E:1

null

A:8 B:2

C:2C:1

D:1

D:1

E:1

E:1

A:8

E:1
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Remove E Nodes

E nodes can now be removed
– counts of internal nodes have been updated
– not needed for solving: DE, CE, …

null

A:2 B:1

C:1C:1

D:1

D:1

null

A:2 B:1

C:1C:1

D:1

D:1

E:1

E:1
E:1
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Remove Nodes with Insufficient Support

If sum of counts of all X nodes < minimum support count, 
remove X nodes, since XE can not be frequent

null

A:2 B:1

C:1C:1

D:1

D:1

Remove B

null

A:2
C:1

C:1

D:1

D:1

T(E): conditional FP-Tree for suffix E
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Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree
Sub-tree for suffix E turned into
conditional FP-Tree for suffix E
• counts updated
• leaves (E’s) removed
• infrequent itemsets pruned 
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Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2
FP-Tree Conditional FP-Tree for suffix E

then used to solve DE, CE, BE, AE
similarly as FP-Tree used to solve
E, D, C, B, A 
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Obtain T(DE) from T(E)

Retaining only prefix paths ending with D

null

A:2
C:1

C:1

D:1

D:1

T(E): conditional FP-Tree for suffix E

null

A:2

C:1

D:1

D:1

T’(DE)
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Determine if DE is Frequent

Support count of DE = 2 (sum of counts of all D’s)
– DE is frequent, need to solve: CDE, BDE, ADE if they exist

null

A:2

C:1

D:1

D:1

T’(DE)
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Preparing for Solving CDE, BDE, ADE

null

A:2

C:1

D:1

D:1

null

A:2

C:1 T(DE)

• update count
• remove leaves

null

A:2
prune infrequent

itemsets

T’(DE)
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Current Position of Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree

Obtain T(DE), ready 
to solve CDE, BDE, ADE

3
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Solving CDE, BDE, ADE

Sub-trees for both CDE and BDE are empty
– no prefix paths ending with C or B

Working on ADE

ADE (support count = 2) is frequent
– but no more subproblem for ADE, backtrack
– & no more subproblem for DE, backtrack

solving next subproblem CE

T(DE): conditional FP-Tree 
for suffix DE

null

A:2

null

A:2

T’(ADE): sub-tree 
for suffix ADE
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Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree

3

456

7

Solving suffix CE

Empty tree
at node 4, 5

All itemsets with suffix 
CDE, BDE are pruned
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Solving for Suffix CE

CE is frequent (support count = 2) 
No more subproblems for CE (empty conditional FP-Tree, 
why?), so done with CE
Work on next subproblems: BE (no support), AE

null

A:2
C:1

C:1

D:1

D:1

Conditional FP-Tree for suffix E

null

A:2

C:1

C:1

Sub-tree for suffix CE

Conditional FP-Tree 
for suffix CE

Empty tree
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Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree

3

456

7

Working on suffix AE

89

10
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Solving for Suffix AE

AE is frequent (support count = 2)
Done with AE, backtrack; done with E, backtrack
Work on next subproblem: suffix D

null

A:2
C:1

C:1

D:1

D:1

T(E): conditional FP-Tree for suffix E

null

A:2

Sub-tree for suffix AE

Conditional FP-Tree 
for suffix AE

Empty tree
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Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree

3

456

7

Working on suffix D

89

10
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Found Frequent Itemsets with Suffix E

E, DE, ADE, CE, AE discovered in this order

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

common suffix E

Working on suffix D
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Outline

Association rules & mining

Finding frequent itemsets
– Apriori algorithm 
– Compact representations of frequent itemsets
– Alternative discovery methods 
– FP-Growth algorithm

Generating association rules

Evaluating discovered rules
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Rule Generation

Given a frequent itemset X, find all non-empty 
subsets Y ⊂ X such that Y → X – Y satisfies the 
minimum confidence requirement
– If X = {A,B,C,D}, we have these candidate rules:

ABC →D, ABD →C, ACD →B, BCD →A, 
A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD, 
BD →AC, CD →AB,

If |X| = k, then there are 2k – 2 candidate 
association rules (ignoring X → ∅ and ∅ → X)



37

Rule Generation

How to efficiently generate rules from frequent itemsets?

Recall that support is anti-monotonic:
– Support of an itemset never exceeds support of its subset
– E.g., s(ABCD) ≤ s(ABD)

But in general, confidence is not anti-monotonic 
– e.g., c(ABC →D) can be larger or smaller than c(AB →D). Why?

)(
)()(

ABC
ABCDDABCc

σ
σ

=→
)(
)()(

AB
ABDDABc

σ
σ

=→
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Rule Generation

But confidence of rules generated from the same itemset
has an anti-monotone property

– E.g., X = {A,B,C,D}, c(BCD → A) ≥ c(CD → AB) ≥ c(D → ABC)

Confidence is anti-monotonic w.r.t. the number of items 
on the right-hand side of the rule

– More items on the right lower/equal confidence

Or monotonic w.r.t. the number of items on left-hand side
– More items on the left larger/equal confidence

)(
)(

)(
)(

)(
)(

D
ABCD

CD
ABCD

BCD
ABCD

σ
σ

σ
σ

σ
σ

≥≥
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Rule Generation for Apriori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned 
Rules

Low 
Confidence 
Rule
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Rule Generation for Apriori Algorithm

Candidate rule is generated by merging two rules 
that share the same prefix
in the rule consequent

Merge(CD AB,BD AC)
would produce the candidate
rule D ABC

Prune rule D ABC if its
subset AD BC does not have
high confidence

BD=>ACCD=>AB

D=>ABC
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Outline

Association rules & mining

Finding frequent itemsets
– Apriori algorithm 
– Compact representations of frequent itemsets
– Alternative discovery methods 
– FP-Growth algorithm

Generating association rules

Evaluating discovered rules
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Pattern Evaluation

Algorithm might produce a large number of rules
– Many of which are not “interesting” 

Original formulation of association rules 
– Based on support & confidence threshold
– But sometimes high confidence rules are interesting

Additional interestingness measures may be used to 
further prune/rank discovered rules

– Lift
– Cosine
– Jaccard coefficient



43

Computing Interestingness Measure

Given a rule X → Y, information needed to compute rule 
interestingness can be obtained from a contingency table

|T|f+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

Contingency table for X → Y
f11: support count of X and Y
f10: support count of X and Y
f01: support count of X and Y
f00: support count of X and Y

Used to define various measures

support, confidence, lift, cosine, 
Jaccard coefficient, etc

Transaction does not 
contain X
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Computing Interestingness Measure

Given a rule X → Y, information needed to compute rule 
interestingness can be obtained from a contingency table

|T|f+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

Contingency table for X → Y

confidence (X → Y)

=

= f11 / (f11 + f10)  

= f11 / f1+

)|(
)(
),(

)(
)( XYP

XP
YXP

X
YX

==
∪

σ
σ
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Drawback of Confidence

1001090
80575Tea
20515Tea

CoffeeCoffee

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) =  0.75, P(Coffee) = 0.9 > .75

Drinking tea actually decreases probability of drinking coffee

Although confidence is high, rule is misleading
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Computing Interestingness Measure

Given a rule X → Y, information needed to compute rule 
interestingness can be obtained from a contingency table

|T|f+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

Contingency table for X → Y

confidence (X → Y)

=

based on P(X,Y) & P(X), but 
also need to consider P(Y)

)|(
)(
),(

)(
)( XYP

XP
YXP

X
YX

==
∪

σ
σ

need to measure correlation of X & Y
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Measuring Correlation

Population of 1000 students
– 600 students know how to swim (S)
– 700 students know how to bike (B)
– 420 students know how to swim and bike (S,B)

– P(S∧B) = 420/1000 = 0.42
– P(S) × P(B) = 0.6 × 0.7 = 0.42

– P(S∧B) = P(S) × P(B) => Independent
– P(S∧B) > P(S) × P(B) => Positively correlated
– P(S∧B) < P(S) × P(B) => Negatively correlated
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Measuring Correlation

Population of 1000 students
– 600 students know how to swim (S)
– 700 students know how to bike (B)
– 420 students know how to swim and bike (S,B)

– P(S∧B) = P(S) × P(B) lift = 1 S & B independent
– P(S∧B) > P(S) × P(B) lift > 1 positive-correlated
– P(S∧B) < P(S) × P(B) lift < 1 negative-correlated

)()(
),(

)(
)|(),(

BPSP
BSP

BP
SBPBSLift ==
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Measures on Correlation

The larger the value, usually the more likely the 
two variables/events are correlated 

othersmany  ...
),()()(

),(),(

)()(
),(),(

)()(
),(),(

YXPYPXP
YXPYXJaccard

YPXP
YXPYXCosine

YPXP
YXPYXLift

−+
=

=

=

X Y
X,Y
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Computing Lift from Contingency Table

Nf+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

11

11
11

11

)()(
),(

),(

++++ === ff
Nf

YPXP
YXP

N
f

N
f

N
f

YXLift
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Lift Example

1001090
80575Tea
20515Tea

CoffeeCoffee

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

⇒ Lift = 0.75/0.9= 0.8333 (< 1, therefore negatively associated)
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Drawback of Lift

1009010
90900X
10010X

YY

1001090
10100X
90090X

YY

10
)1.0)(1.0(

1.0
==Lift 11.1

)9.0)(9.0(
9.0

==Lift

X & Y seldom co-occur X & Y frequently co-occur 

>>

Confidence might be better in this case (both have confidence 1)
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Compute Cosine from Contingency Table

Image X, Y are binary vectors
– Its i-th position = 1, if X occur in i-th transaction

Nf+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

⎟
⎠
⎞

⎜
⎝
⎛ ===

++++ )()(
),(

11

11

11

11

),(

YPXP
YXP

ff
f

N
f

N
f

N
f

YXCosine
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Cosine vs. Lift

Nf+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

11

11

11

11

)()(
),(

)()(
),(

),(

),(

++

++

==

==

ff
Nf

YPXP
YXP

ff
f

YPXP
YXP

YXLift

YXCosine

• If X and Y are independent, lift(X,Y) = 1,
but Cosine(X,Y) =

• Cosine does not depend on N (& f00), unlike Lift
)()( YPXP
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Computing Jaccard Coefficient

Nf+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

011011

11

),()()(
),(

),(

fff
f

YXPYPXP
YXP

YXJaccard

++−+ ==
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Property under Null Addition

Add more transactions that do not have X or Y

Invariant measures:

confidence, Cosine, Jaccard, etc

Non-invariant measures:

support, lift, etc

Nf+0f+1

fo+f00f01X 

f1+f10f11X

Y Y

N+sf+0 + sf+1

fo+ + sf00 + sf01X 

f1+f10f11X

Y Y
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Property under Variable Permutation

 B B  
A p q 
A  r s 

 

 A A  
B p r 
B  q s 

 

Does M(A,B) = M(B,A)?

If yes, M is symmetric; otherwise asymmetric

For example, c(A B) = c(B A)?

)(
)()(

A
BABAc

σ
σ ∪

=→
)(

)()(
B

ABABc
σ

σ ∪
=→
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Property under Variable Permutation

 B B  
A p q 
A  r s 

 

 A A  
B p r 
B  q s 

 

Does M(A,B) = M(B,A)?

If yes, M is symmetric; otherwise asymmetric

lift(A B) = lift(B A)?

)()(
),()(
BPAP

BAPBAlift =→
)()(

),()(
APBP

ABPABlift =→
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Property under Variable Permutation

 B B  
A p q 
A  r s 

 

 A A  
B p r 
B  q s 

 

Does M(A,B) = M(B,A)?

If yes, M is symmetric; otherwise asymmetric

Symmetric measures:

support, lift, Cosine, Jaccard, etc

Asymmetric measures:

confidence, etc
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Applying Interestingness Measures

 B B  
A p q 
A  r s 

 

 A A  
B p r 
B  q s 

 

Association rule (A B) directional

confidence (asymmetric) is intuitive  

but confidence does not capture correlation

Use additional measures such as lift to rank 
discovered rules & further prune those with low ranks
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