
FPFP--Growth Algorithm, Growth Algorithm,
Rule Generation & Evaluation Rule Generation & Evaluation

ITCS 6163/8163
UNCC, Spring 2010

2

Outline

Association rules & mining

Finding frequent itemsets
– Apriori algorithm
– Compact representations of frequent itemsets
– Alternative discovery methods
– FP-Growth algorithm

Generating association rules

Evaluating discovered rules

Last
time

Today

3

FP-Growth Algorithm: Key Ideas

Limitations of Apriori (or generate-and-test paradigm)
– Need to consider a large number of candidates (e.g., 1K frequent

1-itemsets ~1M 2-itemset candidates)
– Need to scan the database many times (once each iteration)

FP-Growth (frequent pattern growth)
– Does not generate candidates
– Typically just need to scan database twice

4

FP-Growth Algorithm

1. Build FP-Tree
– Scan database to discover frequent 1-itemsets
– Set the order of items in the transaction as the order of

decreasing support, e.g., A, B, C, D (s(A) > s(B) > …)
– Scan database again to build a compact representation of

transactions in form of FP-Tree

2. Discover frequent itemsets using FP-Tree
– Recursively find frequent itemsets with common suffix, ending

with items having lower support first
– E.g., finding itemsets ending with D, C, B, A, …

Why this order?

Why lower support first?

5

Why Order Items in Decreasing Support?

So that transactions start with high-support items
– Many transactions tend to share common prefix
– Smaller branching factors, less bushy

Smaller tree (with fewer nodes)

But this is just a heuristics & might not always work
– Exercise: find an example where ordering items by increasing

support produces smaller tree

6

Why Suffixes with Low Support First?

Reverse order of items: D, C, B, A
– Find all frequent itemsets ending w/ D, then C, B, and A

More opportunities for pruning
– If D has lower support than C, it is more likely to be pruned
– If D is pruned, all its descendants can be pruned & D has more

descendants than C
null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

Item order:
A, B, C, D

7

Depth-First Traversal by FP-Algorithm

Find all frequent itemsets ending w/ D, then C, B, and A
– To find frequent itemsets ending w/ D, check if D is frequent; if

yes, find frequent itemsets ending w/ CD, BD, and AD
– To find frequent itemsets ending w/ CD, check if CD is frequent,

if yes, find frequent itemsets ending w/ BCD and ACD
– …

All itemsets with suffix D

null

AB AC ADBC BD CD

A B C D

ABC ABD ACD BCD

ABCD

1
Indicating order

itemsets are checked

2

3

4

5

Item order:
A, B, C, D

8

Determine Item Order

Minimum support count = 2
Scan database to find frequent 1-itemsets

– s(A) = 8, s(B) = 7, s(C) = 5, s(D) = 5, s(E) = 3

Item order (decreasing support): A, B, C, D, E

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

9

FP-Tree: Nodes & Paths

Node = item, each transaction mapped to a path
Consider node X whose path from root is p = I1I2…Ik

– Count associated with X = # of transactions with prefix p

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

Tree after reading 1st

transaction

10

FP-Tree: Node Links

Nodes for the same item at different paths are connected
via node links, to speed up computation of support counts

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:1

B:1

B:1

C:1

D:1
Node link

After reading 2nd transaction

11

Storing Transactions with Common Prefix

Note the shared path for 1st & 3rd transaction

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

null

A:2

B:1

B:1

C:1

D:1

C:1

D:1

E:1

After reading the first 3 transactions

12

Complete FP-Tree for Sample Transactions

null

A:8

B:5

B:2

C:2

D:1

C:1

D:1C:3

D:1

D:1

E:1 E:1

TID Items
1 {A,B}
2 {B,C,D}
3 {A,C,D,E}
4 {A,D,E}
5 {A,B,C}
6 {A,B,C,D}
7 {A}
8 {A,B,C}
9 {A,B,D}
10 {B,C,E}

Pointers to speed up lookup

D:1
E:1

Item Pointer
A
B
C
D
E

Header table

13

Discover Frequent Itemsets w/ FP-Tree

T for discovering all frequent itemsets, T(E) for
discovering all frequent itemsets ending with E, …

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

common suffix E

T: complete FP-Tree

T(E): conditional
FP-Tree for suffix E

T(DE)

X

kX

T(X)

T(kX)

k: first item in new suffix

14

Obtaining Conditional FP-Trees

Obtain T(kX) from T(X): conditional FP-Tree for suffix X
– Obtain T’(kX) from T(X) by retaining only paths ending with k
– Compute support count of k. If k is infrequent, stop & backtrack
– Update counts in T’ to consider only paths ending with k
– Remove leaf nodes (k’s)
– Remove nodes with insufficient support

X

kX

T(X)

T(kX)

15

Example: Obtain T(E) from T

Use header table to find the first path ending with E, find
rest by following node links

null

A:8

B:5

B:2

C:2

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

D:1

E:1

A:8

B:5

C:3

D:1

D:1

Item Pointer
A
B
C
D
E

Header table

16

Retain Only Prefix Paths

Obtain T’ from T by retaining only paths ending with E
– These paths are often called prefix paths

E:1

null

A:8 B:2

C:2
C:1

D:1

D:1

E:1

E:1

A:8

null

A:8

B:5

B:2

C:2

D:1

C:1

D:1
C:3

D:1

D:1

E:1
E:1

D:1

E:1

A:8

B:5

C:3

D:1

D:1

17

Determine if E is Frequent

Support count of E = sum of counts of all E nodes
– suppose minimum support count is 2
– support count of E = 3, so E is frequent

null

A:8 B:2

C:2C:1

D:1

D:1

E:1

E:1

A:8

E:1

18

Update Counts

Counts for internal nodes may not be correct
– due to removal of paths which do not have E’s
– & including the count for paths not ending with E

null

A:8 B:2

C:2C:1

D:1

D:1

E:1

E:1

A:8

E:1

Path BCD was removed,
so 2 is not correct anymore

8 is wrong

19

Update Counts

Start from leaves, going upward
– if node X has only one child Y, count of X = count of Y
– otherwise, count of X = sum of counts of X’s children

null

A:2 B:1

C:1C:1

D:1

D:1

E:1

E:1
E:1

null

A:8 B:2

C:2C:1

D:1

D:1

E:1

E:1

A:8

E:1

20

Remove E Nodes

E nodes can now be removed
– counts of internal nodes have been updated
– not needed for solving: DE, CE, …

null

A:2 B:1

C:1C:1

D:1

D:1

null

A:2 B:1

C:1C:1

D:1

D:1

E:1

E:1
E:1

21

Remove Nodes with Insufficient Support

If sum of counts of all X nodes < minimum support count,
remove X nodes, since XE can not be frequent

null

A:2 B:1

C:1C:1

D:1

D:1

Remove B

null

A:2
C:1

C:1

D:1

D:1

T(E): conditional FP-Tree for suffix E

22

Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree
Sub-tree for suffix E turned into
conditional FP-Tree for suffix E
• counts updated
• leaves (E’s) removed
• infrequent itemsets pruned

23

Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2
FP-Tree Conditional FP-Tree for suffix E

then used to solve DE, CE, BE, AE
similarly as FP-Tree used to solve
E, D, C, B, A

24

Obtain T(DE) from T(E)

Retaining only prefix paths ending with D

null

A:2
C:1

C:1

D:1

D:1

T(E): conditional FP-Tree for suffix E

null

A:2

C:1

D:1

D:1

T’(DE)

25

Determine if DE is Frequent

Support count of DE = 2 (sum of counts of all D’s)
– DE is frequent, need to solve: CDE, BDE, ADE if they exist

null

A:2

C:1

D:1

D:1

T’(DE)

26

Preparing for Solving CDE, BDE, ADE

null

A:2

C:1

D:1

D:1

null

A:2

C:1 T(DE)

• update count
• remove leaves

null

A:2
prune infrequent

itemsets

T’(DE)

27

Current Position of Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree

Obtain T(DE), ready
to solve CDE, BDE, ADE

3

28

Solving CDE, BDE, ADE

Sub-trees for both CDE and BDE are empty
– no prefix paths ending with C or B

Working on ADE

ADE (support count = 2) is frequent
– but no more subproblem for ADE, backtrack
– & no more subproblem for DE, backtrack

solving next subproblem CE

T(DE): conditional FP-Tree
for suffix DE

null

A:2

null

A:2

T’(ADE): sub-tree
for suffix ADE

29

Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree

3

456

7

Solving suffix CE

Empty tree
at node 4, 5

All itemsets with suffix
CDE, BDE are pruned

30

Solving for Suffix CE

CE is frequent (support count = 2)
No more subproblems for CE (empty conditional FP-Tree,
why?), so done with CE
Work on next subproblems: BE (no support), AE

null

A:2
C:1

C:1

D:1

D:1

Conditional FP-Tree for suffix E

null

A:2

C:1

C:1

Sub-tree for suffix CE

Conditional FP-Tree
for suffix CE

Empty tree

31

Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree

3

456

7

Working on suffix AE

89

10

32

Solving for Suffix AE

AE is frequent (support count = 2)
Done with AE, backtrack; done with E, backtrack
Work on next subproblem: suffix D

null

A:2
C:1

C:1

D:1

D:1

T(E): conditional FP-Tree for suffix E

null

A:2

Sub-tree for suffix AE

Conditional FP-Tree
for suffix AE

Empty tree

33

Current Position in Processing

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

1

2

common suffix E

FP-Tree

3

456

7

Working on suffix D

89

10

34

Found Frequent Itemsets with Suffix E

E, DE, ADE, CE, AE discovered in this order

null

A B C D E

DECEBEAE

CDEBDEADE

BCDE

ABCDE

BCEACE

ACDE

CDBDADBCACAB

ABEBCDACDABDABC

ABDEABCEABCD

common suffix E

Working on suffix D

35

Outline

Association rules & mining

Finding frequent itemsets
– Apriori algorithm
– Compact representations of frequent itemsets
– Alternative discovery methods
– FP-Growth algorithm

Generating association rules

Evaluating discovered rules
36

Rule Generation

Given a frequent itemset X, find all non-empty
subsets Y ⊂ X such that Y → X – Y satisfies the
minimum confidence requirement
– If X = {A,B,C,D}, we have these candidate rules:

ABC →D, ABD →C, ACD →B, BCD →A,
A →BCD, B →ACD, C →ABD, D →ABC
AB →CD, AC → BD, AD → BC, BC →AD,
BD →AC, CD →AB,

If |X| = k, then there are 2k – 2 candidate
association rules (ignoring X → ∅ and ∅ → X)

37

Rule Generation

How to efficiently generate rules from frequent itemsets?

Recall that support is anti-monotonic:
– Support of an itemset never exceeds support of its subset
– E.g., s(ABCD) ≤ s(ABD)

But in general, confidence is not anti-monotonic
– e.g., c(ABC →D) can be larger or smaller than c(AB →D). Why?

)(
)()(

ABC
ABCDDABCc

σ
σ

=→
)(
)()(

AB
ABDDABc

σ
σ

=→

38

Rule Generation

But confidence of rules generated from the same itemset
has an anti-monotone property

– E.g., X = {A,B,C,D}, c(BCD → A) ≥ c(CD → AB) ≥ c(D → ABC)

Confidence is anti-monotonic w.r.t. the number of items
on the right-hand side of the rule

– More items on the right lower/equal confidence

Or monotonic w.r.t. the number of items on left-hand side
– More items on the left larger/equal confidence

)(
)(

)(
)(

)(
)(

D
ABCD

CD
ABCD

BCD
ABCD

σ
σ

σ
σ

σ
σ

≥≥

39

Rule Generation for Apriori Algorithm

ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD

Lattice of rules
ABCD=>{ }

BCD=>A ACD=>B ABD=>C ABC=>D

BC=>ADBD=>ACCD=>AB AD=>BC AC=>BD AB=>CD

D=>ABC C=>ABD B=>ACD A=>BCD
Pruned
Rules

Low
Confidence
Rule

40

Rule Generation for Apriori Algorithm

Candidate rule is generated by merging two rules
that share the same prefix
in the rule consequent

Merge(CD AB,BD AC)
would produce the candidate
rule D ABC

Prune rule D ABC if its
subset AD BC does not have
high confidence

BD=>ACCD=>AB

D=>ABC

41

Outline

Association rules & mining

Finding frequent itemsets
– Apriori algorithm
– Compact representations of frequent itemsets
– Alternative discovery methods
– FP-Growth algorithm

Generating association rules

Evaluating discovered rules
42

Pattern Evaluation

Algorithm might produce a large number of rules
– Many of which are not “interesting”

Original formulation of association rules
– Based on support & confidence threshold
– But sometimes high confidence rules are interesting

Additional interestingness measures may be used to
further prune/rank discovered rules

– Lift
– Cosine
– Jaccard coefficient

43

Computing Interestingness Measure

Given a rule X → Y, information needed to compute rule
interestingness can be obtained from a contingency table

|T|f+0f+1

fo+f00f01X

f1+f10f11X

Y Y

Contingency table for X → Y
f11: support count of X and Y
f10: support count of X and Y
f01: support count of X and Y
f00: support count of X and Y

Used to define various measures

support, confidence, lift, cosine,
Jaccard coefficient, etc

Transaction does not
contain X

44

Computing Interestingness Measure

Given a rule X → Y, information needed to compute rule
interestingness can be obtained from a contingency table

|T|f+0f+1

fo+f00f01X

f1+f10f11X

Y Y

Contingency table for X → Y

confidence (X → Y)

=

= f11 / (f11 + f10)

= f11 / f1+

)|(
)(
),(

)(
)(XYP

XP
YXP

X
YX

==
∪

σ
σ

45

Drawback of Confidence

1001090
80575Tea
20515Tea

CoffeeCoffee

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75, P(Coffee) = 0.9 > .75

Drinking tea actually decreases probability of drinking coffee

Although confidence is high, rule is misleading

46

Computing Interestingness Measure

Given a rule X → Y, information needed to compute rule
interestingness can be obtained from a contingency table

|T|f+0f+1

fo+f00f01X

f1+f10f11X

Y Y

Contingency table for X → Y

confidence (X → Y)

=

based on P(X,Y) & P(X), but
also need to consider P(Y)

)|(
)(
),(

)(
)(XYP

XP
YXP

X
YX

==
∪

σ
σ

need to measure correlation of X & Y

47

Measuring Correlation

Population of 1000 students
– 600 students know how to swim (S)
– 700 students know how to bike (B)
– 420 students know how to swim and bike (S,B)

– P(S∧B) = 420/1000 = 0.42
– P(S) × P(B) = 0.6 × 0.7 = 0.42

– P(S∧B) = P(S) × P(B) => Independent
– P(S∧B) > P(S) × P(B) => Positively correlated
– P(S∧B) < P(S) × P(B) => Negatively correlated

48

Measuring Correlation

Population of 1000 students
– 600 students know how to swim (S)
– 700 students know how to bike (B)
– 420 students know how to swim and bike (S,B)

– P(S∧B) = P(S) × P(B) lift = 1 S & B independent
– P(S∧B) > P(S) × P(B) lift > 1 positive-correlated
– P(S∧B) < P(S) × P(B) lift < 1 negative-correlated

)()(
),(

)(
)|(),(

BPSP
BSP

BP
SBPBSLift ==

49

Measures on Correlation

The larger the value, usually the more likely the
two variables/events are correlated

othersmany ...
),()()(

),(),(

)()(
),(),(

)()(
),(),(

YXPYPXP
YXPYXJaccard

YPXP
YXPYXCosine

YPXP
YXPYXLift

−+
=

=

=

X Y
X,Y

50

Computing Lift from Contingency Table

Nf+0f+1

fo+f00f01X

f1+f10f11X

Y Y

11

11
11

11

)()(
),(

),(

++++ === ff
Nf

YPXP
YXP

N
f

N
f

N
f

YXLift

51

Lift Example

1001090
80575Tea
20515Tea

CoffeeCoffee

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

⇒ Lift = 0.75/0.9= 0.8333 (< 1, therefore negatively associated)

52

Drawback of Lift

1009010
90900X
10010X

YY

1001090
10100X
90090X

YY

10
)1.0)(1.0(

1.0
==Lift 11.1

)9.0)(9.0(
9.0

==Lift

X & Y seldom co-occur X & Y frequently co-occur

>>

Confidence might be better in this case (both have confidence 1)

53

Compute Cosine from Contingency Table

Image X, Y are binary vectors
– Its i-th position = 1, if X occur in i-th transaction

Nf+0f+1

fo+f00f01X

f1+f10f11X

Y Y

⎟
⎠
⎞

⎜
⎝
⎛ ===

++++)()(
),(

11

11

11

11

),(

YPXP
YXP

ff
f

N
f

N
f

N
f

YXCosine

54

Cosine vs. Lift

Nf+0f+1

fo+f00f01X

f1+f10f11X

Y Y

11

11

11

11

)()(
),(

)()(
),(

),(

),(

++

++

==

==

ff
Nf

YPXP
YXP

ff
f

YPXP
YXP

YXLift

YXCosine

• If X and Y are independent, lift(X,Y) = 1,
but Cosine(X,Y) =

• Cosine does not depend on N (& f00), unlike Lift
)()(YPXP

55

Computing Jaccard Coefficient

Nf+0f+1

fo+f00f01X

f1+f10f11X

Y Y

011011

11

),()()(
),(

),(

fff
f

YXPYPXP
YXP

YXJaccard

++−+ ==

56

Property under Null Addition

Add more transactions that do not have X or Y

Invariant measures:

confidence, Cosine, Jaccard, etc

Non-invariant measures:

support, lift, etc

Nf+0f+1

fo+f00f01X

f1+f10f11X

Y Y

N+sf+0 + sf+1

fo+ + sf00 + sf01X

f1+f10f11X

Y Y

57

Property under Variable Permutation

 B B
A p q
A r s

 A A
B p r
B q s

Does M(A,B) = M(B,A)?

If yes, M is symmetric; otherwise asymmetric

For example, c(A B) = c(B A)?

)(
)()(

A
BABAc

σ
σ ∪

=→
)(

)()(
B

ABABc
σ

σ ∪
=→

58

Property under Variable Permutation

 B B
A p q
A r s

 A A
B p r
B q s

Does M(A,B) = M(B,A)?

If yes, M is symmetric; otherwise asymmetric

lift(A B) = lift(B A)?

)()(
),()(
BPAP

BAPBAlift =→
)()(

),()(
APBP

ABPABlift =→

59

Property under Variable Permutation

 B B
A p q
A r s

 A A
B p r
B q s

Does M(A,B) = M(B,A)?

If yes, M is symmetric; otherwise asymmetric

Symmetric measures:

support, lift, Cosine, Jaccard, etc

Asymmetric measures:

confidence, etc

60

Applying Interestingness Measures

 B B
A p q
A r s

 A A
B p r
B q s

Association rule (A B) directional

confidence (asymmetric) is intuitive

but confidence does not capture correlation

Use additional measures such as lift to rank
discovered rules & further prune those with low ranks

61

References

Introduction to Data Mining by Pang-Ning Tan,
Michael Steinbach, and Vipin Kumar. Addison-
Wesley, 2006.
– Chapter 6

