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CLUSTERING 
 
Clustering is similar to classification, in that data are grouped. However, unlike the 
classification, the groups are not predefined. Instead the grouping is accomplished by 
finding the similarities between data according to characteristics found in the actual data. 
The groups are called clusters. 
 
So, cluster is a collection of data objects, in which the objects similar to one another 
within the same cluster and dissimilar to the objects in other clusters 
 
Cluster analysis is the process of finding similarities between data according to the 
characteristics found in the data and grouping similar data objects into clusters. 
 
Clustering is unsupervised classification: no predefined classes 
 
Typical applications 

 Marketing: Help marketers discover distinct groups in their customer bases, and 
then use this knowledge to develop targeted marketing programs 

 Land use: Identification of areas of similar land use in an earth observation 
database 

 Insurance: Identifying groups of motor insurance policy holders with a high 
average claim cost 

 City-planning: Identifying groups of houses according to their house type, value, 
and geographical location 

 Earth-quake studies: Observed earth quake epicenters should be clustered along 
continent faults 

 
Definition 

 Clustering: Given a database D = {t1, t2, .., tn}, a distance measure dis(ti, tj) 
defined between any two objects ti and tj, and an integer value k, the clustering 
problem is to define a mapping f: D → {1, …, k} where each ti is assigned to one 
cluster Kj, 1 ≤ j ≤ k.  
Here ‘k’ is the number of clusters. 

 
Classification of clustering techniques: 
There are two main approaches to clustering: 

a. Hierarchical Clustering. 
b. Partitioning Clustering 

Besides, clustering algorithm differ among the different types of attributes, numerical and 
categorical, in accuracy of handle disk-resident data. 
 
Hierarchical Vs Partitioning: 
The partition clustering techniques partition the database into a predefined number of 
clusters. That is, only one set of cluster is created. They attempt to determine the k 
partitions that optimize the certain criterion function. The partition clustering algorithms 
are of two types: k-means algorithm and k-medoid algorithm. Another type of algorithm 
is the k-mode algorithm. 
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With hierarchal clustering, a nested set of cluster is created. Each level in the hierarchy 
has the separate set of clusters. At the lowest level, each item is in its own unique cluster. 
At the highest level, all items belong to the same cluster. With hierarchical clustering, the 
desired number of clusters is not input. 
The hierarchical clustering are of two types  

• Agglomerative: 
Agglomerative starts with as many clusters as there are records, with each cluster 
having only one record. Then pairs of clusters are successively merged until the 
number of clusters reduces to k. at each stage, the pair of clusters are merged 
which are nearest to each other. If the merging is continued, it terminates in the 
hierarchy of clusters which is built with just a single cluster containing all the 
records.   
 

• Divisive: 
Divisive algorithm takes the opposite approach from the agglomerative 
techniques. These starts with all the records in one cluster, and then try to split tat 
clusters into smaller pieces. 
  

 
Example of Hierarchical Clustering 
Consider we need to cluster six elements {A,B,C,D,E,F}. 
 

 
a. six clusters 

 

 
b. four clusters 

 

 
c. Three Clusters 

 
d. Two Clusters 
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e. One Clusters 

 
In the above fig, in part (a) each cluster is viewed to consists of a single element. Part (b) illustrates four 
cluster. Here there are two sets of two-element clusters. These clusters are formed at this level because 
these two elemenrs are close to each other than any of other elements. Part (c) shows the new cluster 
formed by adding a close element to one of the two-element clusters. In part (d), the two-element and three-
element clusters are merged to give a five-element clusters. This is done because these two clusters are 
closer to each other than to the remote element  cluster. At the last stage, part (e) all the six elements are 
merged. The corresponding dendrogram is shown below 

 
 
Partitioning Algorithms: Basic Concept 

 Partitioning method: Construct a partition of a database D of n objects into a set 
of k clusters, such that we have the minimum sum of squared distance 

 
 Given a k, find a partition of k clusters that optimizes the chosen partitioning 

criterion 
 Heuristic methods: k-means and k-medoids algorithms 
 k-means: Each cluster is represented by the center of the cluster 
 k-medoids or PAM (Partition around medoids): Each cluster is represented 

by one of the objects in the cluster   
 

The K-Means Clustering Algorithm  
 

1) choose k, number of clusters to be determined 
2) Choose k objects randomly as the initial cluster centers 
3) repeat 

A B C D E F 
Dendrogram for the above example 
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a) Assign each object to their closest cluster center 
i) Using Euclidean distance 

b) Compute new cluster centers 
i) Calculate mean points 

4) until  
a) No change in cluster centers or 
b) No object change its cluster 

 
Procedure 

 
 
 
Example 
Consider the following instances [in the two-dimensional form] 
 
 
 
 
 
 
 
 

1. If the objects are to be partitioned into 2 clusters then take K=2. 
2. Next , chose two points at random representing initial cluster centers: 

Object 1 and 3 are chosen as cluster centers; i.e. 
C1:= (1.0, 1.5) and C2:= (2.0, 1.5) are chosen as the initial centroid   

3. Euclidean distance between point i and j 
D(i - j)=( (Xi – Xj)2 + (Yi – Yj)2)1/2 

 Initial cluster centers C1:(1.0,1.5) C2:(2.0,1.5) 
 For object ‘1’  

D(C1 – 1) = 0.00 D(C2 –1) = 1.00  
Since D(C1-1)<D(C2-1) the object ‘1’ falls in cluster C1 

Instance X Y 
1 1.0 1.5 
2 1.0 4.5 
3 2.0 1.5 
4 2.0 3.5 
5 3.0 2.5 
6 5.0 6.1 
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 For object ‘2’ 

D(C1 – 2) = 3.00 D(C2 –2) = 3.16  
Since D(C1-2)<D(C2-2) the object ‘2’ falls in cluster C1 

 
 For object ‘3’ 

D(C1 – 3) = 1.00 D(C2 –3) = 0.00 
Since D(C2-3)<D(C1-3) the object ‘3’ falls in cluster C2 

  
 For object ‘4’ 

D(C1 – 4) = 2.24 D(C2 –4) = 2.00  
Since D(C2-4)<D(C1-4) the object ‘4’ falls in cluster C2 

  
 For object ‘5’ 

D(C1 – 5) = 2.24 D(C2 –5) = 1.41   
Since D(C2-5)<D(C1-5) the object ‘5’ falls in cluster C2 

 
 For object ‘6’ 

D(C1 – 6) = 6.02 D(C2 –6) = 5.41  
Since D(C2-6)<D(C1-6) the object ‘6’ falls in cluster C2 

 
 Then the cluster C1 and C2 contain the following objects respectively 

C1 : {1,2}  
C2 : {3.4.5.6} 

 
4. Recomputing cluster centers [taking the mean] 

a. for C1: 
   XC1 = (1.0+1.0)/2 = 1.0 
   YC1 = (1.5+4.5)/2 = 3.0 
b. For C2: 
   XC2 = (2.0+2.0+3.0+5.0)/4 = 3.0 
   YC2 = (1.5+3.5+2.5+6.0)/4 = 3.375 
 
Thus the new cluster centers are C1(1.0,3.0) and C2(3.0,3.375) 

 
5) As the cluster centers have changed the algorithm performs another iteration 

 
 New cluster centers C1(1.0,3.0) and C2(3.0,3.375) 

 D(C1 – 1) = 1.50 D(C2 –1) = 2.74  
Object ‘1’ falls in C1 

 
 D(C1 – 2) = 1.50 D(C2 –2) = 2.29  

Object ‘2’ falls in C1 
 

 D(C1 – 3) = 1.80 D(C2 –3) = 2.13  
Object ‘3’ falls in C1 
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 D(C1 – 4) = 1.12 D(C2 –4) = 1.01  
Object ‘4’ falls in C2 

 
 D(C1 – 5) = 2.06 D(C2 –5) = 0.88   

Object ‘5’ will be in C2 
 

 D(C1 – 6) = 5.00 D(C2 –6) = 3.30  
Object ‘6’ will be in C2 

 
 Then the cluster C1 and C2 contain the following objects respectively 

C1 : {1,2.3}  
C2 : {4.5.6} 

6. computing new cluster centers 
 For C1: 

XC1 = (1.0+1.0+2.0)/3 = 1.33 
YC1 = (1.5+4.5+1.5)/3 = 2.50 

 For C2: 
XC2 = (2.0+3.0+5.0)/3 = 3.33 
YC2 = (3.5+2.5+6.0)/3 = 4.00 

 Thus the new cluster centers are C1(1.33,2.50) and C2(3.33,4.3.00) 
 As the cluster centers have changed the algorithm performs another iteration 

 
[repeat the process until there is no change in cluster centers or no object change its 
cluster] 

  
 
Comments: 
 

 each initial cluster centers may end up with different final cluster configuration 
 Finds local optimum but not necessarily the global optimum 

 Based on sum of squared error differences 
 Between objects and their cluster centers 

 Choose a terminating criterion such as  
 Execute K-Means algorithm until satisfying the condition 

 
 
Weaknesses of K-Means Algorithm 

 Applicable only when mean is defined, then what about categorical data? 
 Need to specify K, the number of clusters, in advance 

 run the algorithm with different K values 
 Unable to handle noisy data and outliers 
 Not suitable to discover clusters with non-convex shapes 

 Works best when clusters are of approximately of equal size 
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Outliers 
Outliers are the points with values much different from those of the remaining set of data. 
Outliers may represent the error in the data or could be correct data values that are simply 
much different from the remaining data. 

The outliers can be viewed as the solitary clusters. However, if a clustering algorithm 
attempts to find the larger clusters, these outliers will be force to be placed in some 
cluster. This process may result the creation of poor clusters by combining two existing 
cluster and leaving the outlier in its own cluster. 

The following example depicts the problem: 
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Fig. The presence of cluster 


