
Client – Server & Distributed System

A Basic Introduction

1



Client Server Architecture

• A network
architecture in which
each computer or
process on theprocess on the
network is either a
client or a server.

Source: http://webopedia.lycos.com

2



Components

• Clients

• Servers

• Communication Networks• Communication Networks

Client

Server

3



• Applications that run on computers

• Rely on servers for

– Files

– Devices

Clients

Clients are Applications

– Devices

– Processing power

• Example: E-mail client

– An application that enables you to send and
receive e-mail

4



Servers

• Computers or processes that manage network
resources

– Disk drives (file servers)

– Printers (print servers)

Servers Manage Resources

– Printers (print servers)

– Network traffic (network servers)

• Example: Database Server

– A computer system that processes database
queries

5



Communication Networks

Networks Connect Clients
and Servers

6



Client–Server Computing

• The computing environment might consists of collection
of equally powerful computers having same processor
speed and equal amount of memory.

• The equal distribution of resources typically does not• The equal distribution of resources typically does not
provide the best services to users.

• An alternative distribution of resources is to buy at least
one machine much more powerful and have the other
machines arranged so that users may connect to the
more powerful machine when they need.

7



Server

Client

Client

Client

Client

Client

Client

The client/server design provides users with a means to issue commands which are
sent across a network to be received by a server which executes their commands for
them. The results are then sent back to the client machine which sent the request in
order that the user may see the results.

Client Client

8



Client–Server Computing

• Process takes place

– on the server and

– on the client

• Servers

Client-Server Computing Optimizes
Computing Resources

• Servers

– Store and protect data

– Process requests from clients

• Clients

– Make requests

– Format data on the desktop

9



Application Functions

• Software application
functions are separated
into three distinct parts

Client: Presentation & Application Logic

Server:
Data Management

10



Application Components

Data Management

Application Logic

1

2

3

Thin

Fat
Client

2 Client Types

Presentation

3 Logical Tiers

1

Database Applications:
Most common use of client-server architectures

Thin
Client

Client

11



Middleware

• Software that connects two
otherwise separate applications

• Example: Middleware product
linking a database system to a Web
server

Database Server:
Manages Data

Middleware Linksserver

Client: Requests Data via Web

Web Server:
Presents Dynamic Pages

Middleware Links
Applications

12



Types of Servers

• Application Servers

• Audio/Video Servers

• Chat Servers

• List Servers

• Mail Servers

• News Servers

From A to Z

• Chat Servers

• Fax Servers

• FTP Servers

• Groupware Servers

• IRC Servers

• News Servers

• Proxy Servers

• Telnet Servers

• Web Servers

Source: http://webopedia.lycos.com

13



Client-Server Model

• Use TCP/IP for reliable network connection.

• This implies the client must establish a connection before
sending the first request.

14



Internet Search Engine

15



Multitiered Architectures: 3 tiers

• Server may act as a client
– Example would be transaction monitor across multiple

databases

16



Horizontal Distribution

• Distribute servers across nodes
– E.g., Web server “farm” for load balancing

• Distribute clients in peer-to-peer systems.

17



Introduction to Distributed Systems

• Why do we develop distributed systems?

– availability of powerful yet cheap microprocessors (PCs, workstations),
continuing advances in communication technology,

• What is a distributed system?
• A distributed system is a collection of independent computers that appear to

18

• A distributed system is a collection of independent computers that appear to
the users of the system as a single system.

• Examples:

– Network of workstations

– Distributed manufacturing system (e.g., automated assembly line)

– Network of branch office computers



• Definition: a distributed system is

– A collection of independent computers that appears to
its users as a single coherent system.

– one that looks like an ordinary system to its
users, but runs on a set of autonomous
processing elements (PEs) where each PE has aprocessing elements (PEs) where each PE has a
separate physical memory space and the
message transmission delay is not negligible.

– There is close cooperation among these PEs.
The system should support an arbitrary number
of processes and dynamic extensions of PEs.

19



Definition of Distributed System

• Distributed Systems encounter number of terminologies:
– distributed, network, parallel, concurrent, and decentralized.

• Parallel means lockstep actions on a data set from a single
thread of control.thread of control.

• Distributed means that the cost or performance of a
computation is governed by the communication of data and
control.

20



• A system is centralized if its components are
restricted to one site, decentralized if its components
are at different sites with no or limited or close
coordination

• When a decentralized system has no or limited• When a decentralized system has no or limited
coordination, it is called networked; otherwise, it is
termed distributed indicating a close coordination
among components at different sites.

21



Advantages of Distributed Systems
over Centralized Systems

• Economics: a collection of microprocessors offer a better price/performance than
mainframes. Low price/performance ratio: cost effective way to increase
computing power.

• Speed: a distributed system may have more total computing power than a
mainframe. Ex. 10,000 CPU chips, each running at 50 MIPS. Not possible to build
500,000 MIPS single processor since it would require 0.002 nsec instruction cycle.
Enhanced performance through load distributing.

22

Enhanced performance through load distributing.

• Inherent distribution: Some applications are inherently distributed. Ex. a
supermarket chain.

• Reliability: If one machine crashes, the system as a whole can still survive. Higher
availability and improved reliability.

• Incremental growth: Computing power can be added in small increments.
Modular expandability

• Another deriving force: the existence of large number of personal computers, the
need for people to collaborate and share information.



Advantages of Distributed Systems
over Independent PCs

– Data sharing: allow many users to access to a common
data base

– Resource Sharing: expensive peripherals like color printers

23

– Communication: enhance human-to-human
communication, e.g., email, chat

– Flexibility: spread the workload over the available
machines



Disadvantages of Distributed Systems

– Software: difficult to develop software for distributed
systems

– Network: saturation, lossy transmissions

– Security: easy access also applies to secrete data

– Distribution of control

24

– Distribution of control

• Hard to detect faults

• Administration issues

– Performance

– Interconnect & servers must scale



Goals of D.S.

• Transparency

• Openness

• Reliability

• Performance• Performance

• Scalability

25



Design Challenges of Distributed Systems

 Designers of distributed systems need to
take the following challenges into account:

Heterogeneity

 Heterogeneous components must be able
to interoperate.

26

to interoperate.

Openness

 Interfaces should allow components to be
added or replaced.

Security

 The system should only be used in the way
intended.



Design Challenges of Distributed Systems

Scalability

 System should work efficiently with an
increasing number of users.

 System performance should increase with
inclusion of additional resources.

Failure handling

27

Failure handling

 Failure of a component (partial failure)
should not result in failure of the whole
system.

Transparency

 Distribution should be hidden from the user
as much as possible



Transparency
• How to achieve the single-system image, i.e how to

make a collection of computers appear as a single
computer.

• Hiding all the distribution from the users as well as
the application programs can be achieved at twothe application programs can be achieved at two
levels:

– hide the distribution from users

– At a lower level, make the system look transparent to
programs.

28



Forms of Transparency in a Distributed System

Transparency Description

Access
Hide differences in data representation and how a
resource is accessed

Location Hide where a resource is located

Migration
Hide that a resource may move to another location or
is migrated to newer version

Migration
is migrated to newer version

Relocation
Hide that a resource may be moved to another
location while in use

Replication
Hide that a resource may be shared by several
competitive users

Concurrency
Hide that a resource may be shared by several
competitive users

Failure Hide the failure and recovery of a resource

Persistence
Hide whether a (software) resource is in memory or
on disk

29

dellpc
Typewriter
accessed



Openness
• Make it easier to build and change

• The first step in openness is publishing the
documentation of software components and interfaces of
the components to make them available to software
developers

• Monolithic Kernel: systems calls are trapped and executed by
the kernel. All system calls are served by the kernel, e.g.,
UNIX.

• Microkernel: provides minimal services
– IPC

– some memory management

– some low-level process management and scheduling

– low-level i/o (E.g. multiple system interfaces.) 30



Reliability

• Distributed system should be more reliable
than a single system.

– Availability: fraction of time the system is usable.

– Redundancy improves it.– Redundancy improves it.

– Need to maintain consistency

– Need to be secure

– Fault tolerance: need to mask failures, recover
from errors.

31



Performance

• Performance loss due to communication
delays:

– fine-grain parallelism: high degree of interaction

– coarse-grain parallelism– coarse-grain parallelism

– (Granularity is the extent to which a system is broken down into small
parts, either the system itself or its description or observation)

• Performance loss due to making the system
fault tolerant

32



Scalability
• System should work efficiently with an

increasing number of users.

• System performance should increase with
inclusion of additional resources

• Techniques that require resources linearly in terms of
the size of the system are not scalable. (e.g.,
broadcast based query won't work for large
distributed systems.

33



Pitfalls when Developing Distributed Systems

• False assumptions made by first time developer:

– The network is reliable.

– The network is secure.

– The network is homogeneous.

– The topology does not change.– The topology does not change.

– Latency is zero.

– Bandwidth is infinite.

– Transport cost is zero.

– There is one administrator.

34



Hardware Concepts

1.6

Basic organizations and memories in distributed
computer systems

35



Hardware Considerations

• General Classification:

– Multiprocessor – a single address space among
the processors

– Multicomputer – each machine has its own– Multicomputer – each machine has its own
private memory.

• OS can be developed for either type of
environment.

36



Multiprocessors

1.7

A bus-based multiprocessor

37



Multiprocessors

A crossbar switch An omega switching network

38



Enslow’s Modle of DS

• Enslow (Scientist) proposed that distributed
systems can be examined using three
dimensions of hardware, control, and data.

• Distributed system = distributed hardware +
distributed control + distributed data

39



• a system can be classified as a distributed system if all
three categories (hardware, control, and data) reach a
certain degree of decentralization.

• Several points in the dimension of hardware
organization are as follows:organization are as follows:

– H1. A single CPU with one control unit.

– H2. A single CPU with multiple ALUs (arithmetic and logic
units). There is only one control unit

40



– H3. Separate specialized functional units, such as one CPU
with one floating-point coprocessor.

– H4. Multiprocessors with multiple CPUs but only one
single I/O system and one global memory.

– H5. Multicomputers with multiple CPUs, multiple I/O
systems and local memories.

• Similarly, points in the control dimension in order of
increasing decentralization are the following:

– C1. Single fixed control point. Note that physically the
system may or may not have multiple CPUs.

41



– C2. Single dynamic control point. In multiple CPU cases
the controller changes from time to time among CPUs.

– C3. A fixed master/slave structure. For example, in a
system with one CPU and one coprocessor, the CPU is a
fixed master and the coprocessor is a fixed slave.

– C4. A dynamic master/slave structure. The role of– C4. A dynamic master/slave structure. The role of
master/slave is modifiable by software.

– C5. Multiple homogeneous control points where copies of
the same controller are used.

– C6. Multiple heterogeneous control points where different
controllers are used

42



• The database has two components that can be
distributed: files and a directory that keeps
track of these files

• Distribution can be done in one of two ways,
or a combination of both: replication andor a combination of both: replication and
partition

• A database is partitioned if it is split into sub-
databases and then each sub-database is
assigned to different sites

43



– D1. Centralized databases with a single copy of both files
and directory.

– D2. Distributed files with a single centralized directory and
no local directory.

– D3. Replicated database with a copy of files and a
directory at each site.

– D4. Partitioned database with a master that keeps a
complete duplicate copy of all files.

– D5. Partitioned database with a master that keeps only a
complete directory.

– D6. Partitioned database with no master file or directory.

44



• A system is a distributed one if it has:

– Multiple processing elements (PEs).

– Interconnection hardware.

– Shared states.

45



Enslow’s model of distributed systems

(Some researchers also considered computer networks and
parallel computers as part of distributed system)

46



Traditional ApplicationsTraditional Applications

Distributed Applications

47



Role of DCE
• Distributing applications requires the creation of a

distributed environment in which they can run.

• Many vendors have already solved some of the
relevant problems for their proprietaryrelevant problems for their proprietary
environments.

• OSF DCE provides a vendor-neutral solution

– It’s a platform for building distributed applications

– It can support a range of commercial applications

– It builds on work already done by vendors
48



Requirement of Distributed Env.

• A supporting protocol for distributed
Applications

• Mechanisms to exploit the environment’s
inherent parallelism.inherent parallelism.

• A way to locate distributed services, i.e., a
directory service

• Security services, A mechanism for
synchronizing the internal clocks of distributed
systems.

49



Requirement …..

• Support for simple systems:

– Personal computers

– Diskless system

• Optionally, some number of distributed
applications such as:

– A distributed file service

– A network print service

– Others

50



Distribution Problems

• What approach should be used to distribute
Applications?

– Remote Procedure Call (RPC)

– Message Passing TCP/IP

• What directory service(s) should be used?

– A local directory must be fast and flexible

– A global directory must be standard and widely supported

51



Problems ….
• How should security be provided?

– What services are needed?

– What mechanisms should be used to provide those
services ?

• What protocol should be used to synchronize clocks?• What protocol should be used to synchronize clocks?

– There are several possible choices

• How can simple systems be supported?

– Provide special treatment for PCs and diskless
workstations.

– Alternatively, treat them like any other system in the
distributed environment

52



Problems…

• What distributed applications should be
provided?

– A distributed file service is essential

– There are many other possibilities– There are many other possibilities

53



DCE Approach
• Distributing applications

– Use remote procedure call (RPC)

• Allowing parallelism• Allowing parallelism

– Support a Threads package

• Directory Services

– Use a Cell Directory Service for local lookups

– Provide options for a global directory service

54



DCE …

• Security

– Provide authentication, authorization, data
integrity, and data privacy

• integrity, and data privacy

– Use a Distributed Time Service (DTS)

– Allow some integration with the widely used
Network Time Protocol (NTP)

55



DCE ..
• Simple Systems

– Provide special services for diskless support

– Treat PCs like any other system

• Distributed applications

– Provide a Distributed File Service (DFS)

– Allow the creation of a common distributed
environment to encourage competition among
application developers

56



OSF DCE: A System View

57



DCE & Distributed Computing

OSF DCE

Transport
TCP/UDP

Internetworking
IP/CLNPIP/CLNP

Sub networks
Ethernet/Token Ring

Open Source Foundation (OSF) DCE: A Layered View

58



DCE: Clients & Servers

• DCE relies on the notion of clients and servers

• Clients request services

• Servers provide services

• A single machine may support both the• A single machine may support both the
clients and servers

• A single process may act as both a client and a
server at different times

59



cell

• Mostly clients perform most of their
communication with only a few servers.

• In DCE, clients and servers that communicate
mostly with one another are grouped into a cellmostly with one another are grouped into a cell

• A cell is an administrative unit

• Every machine belongs to one cell

• A cell may consists of two to thousand systems

• DCE optimizes intra-cell communication

60



cells

61



cells

62




