 Pwrml
Cloud technologies

A few technologies have been crucial in enabling the development and use of
cloud platforms. Web services allow applications to communicate easily over
the internet: Composite applications are easily assembled from distributed
web-based components using ‘mashups.’ If there is one technology that has
contributed the most to cloud computing, it is virtualization. By decoupling
the software platform from hardware resources, virtualization enables massive
cloud data centers to function seamlessly in a fault-tolerant manner. Similarly,
multi-tenancy allows the same software platform to be shared by multiple
applications, and can thus be looked upon as application-level virtualization.
Multi-tenancy is critical for developing software-as-a-service applications and
Dev 2.0 platforms.






Web services, AJAX and
mashups

The internet is based on a universally accepted set of protocols, HTTP, DNS,
and TCP/IP, that provide the foundation for web-based cloud computing
offerings. In this chapter we examine three critical web-based technologies
at the next level of granularity that have been instrumental in improving
the usability of web-based applications: Web services are used to request for
and access infrastructure services in the cloud; AJAX-based user interfaces
allow web-based applications to be user friendly; finally mashups bring a new
dimension to software as a service by enabling users to compose multiple SaaS
applications into a single user interface.

7.1 WEB SerVICES: SOAP AnND REST

We have discussed the genesis and evolution of web services briefly in
Chapter 2. Here we give a brief technical overview of both SOAP/WSDL and
REST-based web services, and also compare these in the context of their util-
ity in building cloud-based offerings. For a more detailed description of web
services protocols, see [30].
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7.1.1 SOAP/WSDL Web services

SOAP/WSDL web services evolved from the need to programmatically inter-
connect web-based applications. As a result SOAP/WSDL web services are
essentially a form of remote procedure calls over HTTP, while also includ-
ing support for nested structures (objects) in a manner similar to earlier
extensions of RPC, such as CORBA; we shall return to this point later.

The elements of a SOAP/WSDL web service are illustrated in Figure 7.1,
using as an example the service provided by Google for searching the web.
A client application can invoke this web service by sending a SOAP request
in XML form, as illustrated at the bottom left of the figure, to the desig-
nated service URL. The specifications of the service, including the service
URL and other parameters, are made available by the service provider (in
this case Google) as another XML file, in WSDL! format, as illustrated in the
rest of the figure. The WSDL file specifies the service endpoint, i.e. the URL
that responds to SOAP requests to this web service, as shown in the bottom
right of the figure. Above this are a number of port types, within which are
listed the operations (functions, methods) that are included in this service,
along with their input and output parameter types; for example the opera-
tion doGoogleSearch has input and output messages doGoogleSearch and
doGoogleSearchResponse respectively. The types of these messages are also
specified in detail in the WSDL file, as XML schemas. For example in the
case of a doGoogleSearch operation, the input messages are composed
of simple types (i.e. strings, etc.), whereas the output, i.e. search result, is a
complex type comprising of an array of results whose schema is also specified
in the WSDL (not shown in the figure). Finally, the WSDL binding links these
abstract set of operations with concrete transport protocols and serialization
formats.

SOAP documents, i.e. the XML messages exchanged over HTTP, com-
prise of a body (as shown in bottom left of the figure) as well as an optional
header that is an extensible container where message layer information can
be encoded for a variety of purposes such as security, quality of service,
transactions, etc. A number of WS-* specifications have been developed to
incorporate additional features into SOAP web services that extend and uti-
lize the header container: For example, WS-Security for user authentication,
WS-Transactions to handle atomic transactions spanning multiple service

1 WSDL: web service definition language.
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requests across multiple service providers, WS-Resource Framework enabling
access to resource state behind a web service (even though each web service
is inherently stateless) and WS-Addressing to allow service endpoints to be
additionally addressed at the messaging level so that service requests can be
routed on non-HTTP connections (such as message queues) behind an HTTP
service facade, or even for purely internal application integration.

The origin of the rather complex structure used by the SOAP/WSDL
approach can be traced back to the RPC (remote procedure call) standard
and its later object oriented variants, such as CORBA. In the original RPC
protocol (also called SUN RPC), the client-server interface would be spec-
ified by a <. .>.x file, from which client and server stubs in C would be
generated, along with libraries to handle complex data structures and data
serialization across machine boundaries. In CORBA, the . x files became IDL
descriptions using a similar overall structure; Java RMI (remote method invo-
cation) also had a similar structure using a common Java interface class to
link client and server code. SOAP/WSDL takes the same approach for enabling
RPC over HTTP, with WSDL playing the role of .x files, IDLs or interface
classes.

7.1.2 REST web services

Representational State Transfer (REST) was originally introduced as an archi-
tectural style for large-scale systems based on distributed resources, one of
whose embodiments is the hypertext driven HTML-based web itself. The use
of REST as a paradigm for service-based interaction between application pro-
grams began gaining popularity at about the same time as, and probably in
reaction to, the SOAP/WSDL methodology that was being actively propagated
by many industry players at the time, such as IBM and Microsoft.

REST web services are merely HTTP requests to URIs,” using exactly
the four methods GET, POST, PUT and DELETE allowed by the HTTP
protocol. Each URI identifies a resource, such as a record in a database.
As an example, consider accessing a customer record with the REST ser-
vice http://x.yv.com/customer /11998, which returns the record in
XML format. In case the record contains links (foreign keys) to related

2 See Chapter 2.
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records, such as the customer’s accounts or address, links to these are embed-
ded in the returned XML, suchas http://x.v.com/account /334433,
Alternatively, these links might be directly accessed via a REST service
http://x.y.com /customer/11998/accounts. The client applica-
tion merely accesses the URIs for the resources being managed in this ‘RESTful’
manner using simple HTTP requests to retrieve data. Further, the same mech-
anism can allow manipulation of these resources as well; so a customer
record may be retrieved using a GET method, modified by the client pro-
gram, and sent back using a PUT or a POST request to be updated on the
server.

Figure 7.2 illustrates REST web services with the above example as well as
two real-life examples using Yahoo! and Google, both of whom also provide a
REST web service interface to their core search engine. Notice that the URLs
of these search services include parameters (appid and query for Yahoo!, ver
and q for Google); strictly speaking these service definitions deviate from the
‘strong’ REST paradigm, where resources are defined by pure URIs alone. In
principle, such purity could have easily been maintained: Note that version
is part of the URI in the Yahoo! service while it is a parameter in the case of
Google, which need not have been the case; the input URL would simply need
to have been processed differently. In practice however, the use of parameters
in REST services has now become widespread.

Note that while the Yahoo! service returns XML, the Google Service
returns JSON (JavaScript Serialized Object Notation). A JSON string is sim-
ply a piece of JavaScript code that defines a ‘map” data structure in that
language. The advantage of using JSON is that XML parsing is avoided;
instead, the response string is simply evaluated by client-side JavaScript
code (e.g. res=eval (response)). In the case of our Google service,
this would allow the results to be accessed directly from JavaScript, so that
res["responseData"] ["results"][0] ["url"] returns the first
result URL, etc. As far as REST is concerned, this is perfectly legal since
in theory any allowable internet media types, such as HTML, XML, text, pdf
or doc, can be exchanged via a REST service. Finally, we mention in passing
that client and server authentication is easily handled in REST just as with
normal HTML web pages by using SSL (i.e. HTTPS).

3" A set of key-value pairs, for example {‘a":1, b:2}.
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7.2 SOAP veErsus REST

Many discussions of SOAP versus REST focus on the point that encod-
ing services as SOAP/WSDL makes it difficult to expose the semantics
of a web service in order for it to be easily and widely understood,
so that many different providers can potentially offer the same service.
Search is a perfect example. It is abundantly clear that the SOAP/WSDL
definition of Google search does not in any way define an ‘obvious’ stan-
dard, and it is just as acceptable for an alternative API to be provided
by other search engines. However, in the case of REST, there is the
potential for such standardization: If for example, the REST standard for
search were http://<provider-URL>/<query-string>, multiple
providers could make this available; the response documents in XML could
be self-describing by referring to provider specific name spaces where needed
but adhering to a publicly specified top-level schema. We do not take a view
on this aspect of the SOAP vs. REST debate, since standardization and reuse
are difficult goals. As is apparent from the two very different REST APIs for
web search, it is not SOAP or REST that drives standardization. Nevertheless,
the relative simplicity of creating and using REST-based services as compared
to the more complex SOAP/WSDL approach is immediately apparent from
our examples. Further, REST can avoid expensive XML parsing by using
alternatives such as JSON. So our view is that the case for using SOAP/WSDL
needs to be explicitly made depending on the context, with REST being the
option of choice from the perspective of simplicity as well as efficiency.

To examine when SOAP services may in fact be warranted, we now compare
the SOAP and REST paradigms in the context of programmatic communica-
tion between applications deployed on different cloud providers, or between
cloud applications and those deployed in-house. In Table 7.1 we compare
these along six dimensions: The location where servers providing the service
can reside; how secure the interaction is; whether transactions can be sup-
ported; how dependent the protocol is on HTTP technology; the extent of
development tools and support required; the efficiency of the resulting imple-
mentations; and finally the software development productivity to be expected
using each. We conclude from this analysis that for most requirements SOAP
is an overkill; REST interfaces are simpler, more efficient and cheaper to
develop and maintain. The shift from SOAP to REST especially in the cloud
setting is apparent: The Google SOAP service is now deprecated, and essen-
tially replaced by the REST API using JSON. While Amazon web services
publish both SOAP as well as REST APIs, the SOAP APIs are hardly used
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TABLE 7.1 SOAP/WSDL versus REST

SOAP/WSDL REST Comments
Location Some endpoints All endpoints Complex B2B
can be behind must be on the  scenarios
corporate internet require SOAP
networks on
non-HTTP
connects, e.g.
message queues
Security HTTPS which can  Only HTTPS Very stringent
be augmented security needs
with additional can be
security layers addressed only
by SOAP
Efficiency XML parsing XML parsing can REST is lighter and
required be avoided by more efficient
using JSON
Transactions Can be supported No support Situations
requiring
complex
multi-request /
multi-party
transactions
need SOAP
Technology  Can work without Relies on HTTP  REST is for pure
HTTP, e.g. internet com-
using message munications
queues instead and cannot mix
other transports
Tools Sophisticated tools No special tools  REST is lighter
required (and required and easier to use
are available) to especially if
handle client using JSON
and server
development
Productivity Low, due to High, due to REST is faster and
complex tools simplicity cheaper for

and skills
needed

developers to
use
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(15 percent is a number quoted on the web). In our opinon REST web ser-
vices will gradually overtake SOAP/WSDL, and it is likely that mechanisms
to address more complex functionality, such as transactions, will also be
developed for REST in the near future.

7.3 AJAX: ASYNCHRONOUS ‘RICH’ INTERFACES

Traditional web applications interact with their server components through a
sequence of HTTP GET and POST requests, each time refreshing the HTML
page in the browser. The use of client-side (i.e., in-browser) JavaScript is
limited to field validations and some user interface effects such as animations,
hiding or unhiding parts of the page etc. Apart from any such manipulations,
between the time a server request is made and a response obtained, the browser
is essentially idle. Often one server request entails retrieving data from many
data sources, and even from many different servers; however requests are still
routed through a single web server that acts as a gateway to these services.

We described the historical evolution of the AJAX paradigm in Chapter 2.
Using AJAX JavaScript programs running in the browser can make asyn-
chronous calls to the server without refreshing their primary HTML page.
Heavy server-side processing can be broken up into smaller parts that are
multiplexed with client-side processing of user actions, thereby reducing the
overall response time as well as providing a ‘richer’ user experience. Further,
client-side JavaScript can make REST service requests not only to the pri-
mary web server but also to other services on the internet, thereby enabling
application integration within the browser.

From a software architecture perspective, AJAX applications no longer
remain pure thin clients: Significant processing can take place on the client,
thereby also exploiting the computational power of the desktop, just as was the
case for client-server applications. Recall that using the client-server architec-
ture one ran the risk of mixing user interface and business logic in application
code, making such software more difficult to maintain. Similar concerns arise
while using the AJAX paradigm.

Figure 7.3 illustrates how AJAX applications work; these are also called ‘rich
internet applications’ (RIA), in comparison to traditional web applications.
A base HTML page is loaded along with JavaScript code that contains the
remainder of the user interface. This JavaScript program renders a ‘rich’ user
interface that can often look like a traditional client-server application. When
data is required from the server, asynchronous requests are made via REST
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Ficure 7.3. Rich internet applications with AJAX

web services, which return JSON structures that are directly used by the
JavaScript code running in the browser.

Because of the nature of the HTTP protocol, a web server expects that an
incoming request from a single client session will not be followed by another
until the server has responded to the first request. If a client violates this
protocol by sending many requests at a time, at best these will be ignored
and at worst some poorly implemented servers may even crash! Therefore
an AJAX controller is required to serialize the asynchronous requests being
made to the server; each request is queued and sent to the server only after
the previous request has returned with a response. Each response triggers
a handler function which is registered with the controller when placing the
request.

Using AJAX, highly interactive yet completely browser-based user inter-
faces become possible. Using this approach, software as a service application
can begin to provide a user experience similar to thick client applications
which typically run inside the enterprise, thereby making SaaS offerings more
acceptable to enterprise users. Further, using AJAX, services from multi-
ple cloud providers can be integrated within the browser, using JavaScript,
instead of using more complex server-side integration mechanisms based on
web services. Also, unlike server-side integration that needs to be performed
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by corporate IT, simple JavaScript-based integrations can often be performed
by business units themselves, in much the same manner as Dev 2.0 platforms
allow simple applications to be developed by end-users. This has resulted in a
proliferation of user-driven integration of services from multiple cloud-based
services and Saa$S applications, often without the knowledge and participation
of corporate IT.

7.4 MASHUPS: USER INTERFACE SERVICES

We have seen that using AJAX a JavaScript user interface can call many dif-
ferent web services directly. However, the presentation of data from these
services within the user interface is left to the calling JavaScript program.
Mashups take the level of integration one step further, by including the
presentation layer for the remote service along with the service itself.

Figure 7.4 illustrates mashups, again using the Google search service that is
also available as amashup. In order to display a Google search box, a developer
only needs to reference and use some JavaScript code that is automatically
downloaded by the browser. This code provides a ‘class’ google that provides
the AJAX API published by Google as its methods. (Strictly speaking this is
a function, since JavaScript is not truly object orientated, but in colloquial
usage such JavaScript functions are referred to as classes.) User code calls
these methods to instantiate a search control ‘object’ and render it within the
HTML page dynamically after the page has loaded. Notice that there is no

<html xmIns="http://www.w3.org/1999/xhtml">
<head>

<script src="http://www.google.com/jsapi" type="text/javascript'> Cloud Computing

</script>

<script type="text/javascript"> -

google.load('search’, '1.0"); " Web (B85

function OnLoad() { Cloud computing - Wikipedia, the free
var searchControl= new google.search.SearchControl();
searchControl.addSearcher(new google.search.WebSearch());

Cloud computing is a stvle of computing in

searchControl.draw(document.getElementByld("searchcontrol")); which dynamically scalable and often virtualized
} g resources are provided as a service over the
google.setOnLoadCallback(OnLoad, true); /,—’/ Internet. ...
</script> emmmmmmemeT -

</head> P

<body> v
<div id="searchcontrol">Loading</div>

</body>

</html>

Ficure 7.4. Mashup example
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AJAX controller or REST service visible to the user; all this is hidden within
the API methods. Recall that the purpose of an AJAX controller was to serialize
HTTP requests from a running session to a particular web server: There is no
need for serialization across calls to different service providers, and therefore
it is perfectly okay for different mashup services to provide their own AJAX
controllers within their APIs.

From a user perspective, mashups make it easy to consume web services. In
fact, the actual service call need not even be a REST service, and may instead
involve proprietary AJAX-based interaction with the service provider. In this
sense, mashups make the issue of a published service standard using REST or
SOAP/WSDL irrelevant; the only thing that is published is a JavaScript library
which can be downloaded at runtime and executed by a client application.

At the same time, the fact that mashups require downloading and running
foreign code is a valid security concern especially in the enterprise scenario.
JavaScript code normally cannot access resources on the client machine apart
from the browser and network, so it may appear that there is no real security
threat, unlike say ActiveX controls which have essentially complete access to
the desktop once a user installs them. However, this may no longer remain
the case in the future: For example Google Gears is a framework that enables
offline operation of applications by caching data on the client desktop. This
presents a potential security threat, though not as serious as ActiveX controls:
For example, if a user has installed Gears for some reason, such as accessing
Gmail in offline mode, another site the user accesses may ask for permission
to use Gears (note that such a prompt is always shown, making Gears a bit
safer), and if granted store some executables on a user’s disk, and present
the user with a link which runs these as a side effect. As a result of such
potential security risks, enterprise adoption of mashups has been slower than
warranted by the technology’s advantages.

Note that Google initially published a SOAP/WSDL service but later
replaced it with an AJAX mashup API, and as a by product also made available
the REST web service which we discussed earlier. Another popular mashup
is Google Maps. It is becoming increasingly apparent that mashup-based
integration of cloud-based services is easy, popular and represents the direc-
tion being taken by the consumer web service industry. Enterprise usage
of mashup technology is only a matter of time, not only in the context of
cloud-based offerings, but also for integrating internal applications with cloud
services, as well as amongst themselves.



Virtualization technology

If one had to choose a single technology that has been most influential in
enabling the cloud computing paradigm, it would have to be virtualization.
As we have seen earlier in Chapter 1, virtualization is not new, and dates back
to the early mainframes as a means of sharing computing resources amongst
users. Today, besides underpinning cloud computing platforms, virtualiza-
tion is revolutionizing the way enterprise data centers are built and managed,
paving the way for enterprises to deploy ‘private cloud’ infrastructure within
their data centers.

8.1 VIRTUAL MACHINE TECHNOLOGY

We begin with an overview of virtual machine technology: In general, any
means by which many different users are able simultaneously to interact with
a computing system while each perceiving that they have an entire ‘virtual
machine’ to themselves, is a form of virtualization. In this general sense, a
traditional multiprogramming operating system, such as Linux, is also a form
of virtualization, since it allows each user process to access system resources
oblivious of other processes. The abstraction provided to each process is
the set of OS system calls and any hardware instructions accessible to user-
level processes. Extensions, such as ‘user mode Linux’ [17] offer a more
complete virtual abstraction where each user is not even aware of other user’s
processes, and can login as an administrator, i.e. ‘root,’ to their own seemingly
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private operating system. ‘Virtual private servers’ are another such abstraction
[36]. At a higher level of abstraction are virtual machines based on high-level
languages, such as the Java virtual machine (JVM) which itself runs as an
operating system process but provides a system-independent abstraction of
the machine to an application written in the Java language. Such abstractions,
which present an abstraction at the OS system call layer or higher, are called
process virtual machines. Some cloud platforms, such as Google’s App Engine
and Microsoft’s Azure, also provide a process virtual machine abstraction in
the context of a web-based architecture.

More commonly, however, the virtual machines we usually refer to when
discussing virtualization in enterprises or for infrastructure clouds such
as Amazon’s EC2 are system virtual machines that offer a complete hard-
ware instruction set as the abstraction provided to users of different virtual
machines. In this model many system virtual machine (VM) instances share
the same physical hardware through a virtual machine monitor (VMM), also
commonly referred to as a hypervisor. Each such system VM can run an inde-
pendent operating system instance; thus the same physical machine can have
many instances of, say Linux and Windows, running on it simultaneously.
The system VM approach is preferred because it provides complete isolation
between VMs as well as the highest possible flexibility, with each VM seeing
a complete machine instruction set, against which any applications for that
architecture are guaranteed to run.

It is the virtual machine monitor that enables a physical machine to be
virtualized into different VMs. Where does this software itself run? A host
VMM is implemented as a process running on a host operating system that
has been installed on the machine in the normal manner. Multiple guest
operating systems can be installed on different VMs that each run as operating
system processes under the supervision of the VMM. A native VMM, on the
other hand, does not require a host operating system, and runs directly on
the physical machine (or more colloquially on ‘bare metal’). In this sense,
a native VMM can be viewed as a special type of operating system, since it
supports multiprogramming across different VMs, with its ‘system calls’ being
hardware instructions! Figure 8.1 illustrates the difference between process
virtual machines, host VMMs and native VMMs. Most commonly used VMMs,
such as the open source Xen hypervisor as well as products from VMware are
available in both hosted as well as native versions; for example the hosted
Xen (HXen) project and VMware Workstation products are hosted VMMs,
whereas the more popularly used XenServer (or just Xen) and VMware ESX
Server products are native VMMs.
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Ficure 8.1. Virtual machines

In the next section we shall briefly describe how system virtual machines
are implemented efficiently and how individual virtual machines actually run.

8.1.1 System virtual machines

A system virtual machine monitor needs to provide each virtual machine
the illusion that it has access to a complete independent hardware system
through a full instruction set. In a sense, this is very similar to the need
for a time-sharing operating system to provide different processes access to
hardware resources in their allotted time intervals of execution. However,
there are fundamental differences between the ‘virtual machine’ as perceived
by a traditional operating system processes and a true system VM:

1. Processes under an operating system are allowed access to hardware
through system calls, whereas a system VMM needs to provide a full
hardware instruction set for use by each virtual machine

2. Each system virtual machine needs to be able to run a full operating system,
while itself maintaining isolation with other virtual machines.

Going forward we will focus our discussion on native VMMs that run
directly on the hardware, like an operating system; native VMMs are more
efficient and therefore the ones used in practice within enterprises as well
as cloud platforms. One way a native system VMM could work is by emu-
lating instructions of the target instruction set and maintaining the state of
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different virtual machines at all levels of memory hierarchy (including reg-
isters etc.) indirectly in memory and switching between these as and when
required, in a manner similar to how virtual memory page tables for dif-
ferent processes are maintained by an operating system. In cases where the
target hardware instruction set and actual machine architecture are different,
emulation and indirection is unavoidable, and, understandably, inefficient.
However, in cases where the target instruction set is the same as that of
the actual hardware on which the native VMM is running, the VMM can be
implemented more efficiently.

An efficient native VMM attempts to run the instructions of each of is
virtual machines natively on the hardware, and while doing so also maintain
the state of the machine at its proper location in the memory hierarchy, in
much the same manner as an operating system runs process code natively as
far as possible except when required.

Let us first recall how an operating system runs a process: The process
state is first loaded into memory and registers, then the program counter is
reset so that process code runs from thereon. The process runs until a timer
event occurs, at which point the operating system switches the process and
resets the timer via a special privileged instruction. The key to this mecha-
nism is the presence of privileged instructions, such as resetting the timer
interrupt, which cause a trap (a program generated interrupt) when run in
‘user’ mode instead of ‘system’ mode. Thus, no user process can set the timer
interrupt, since this instruction is privileged and always traps, in this case to
the operating system.

Thus, it should be possible to build a VMM in exactly the same manner
as an operating system, by trapping the privileged instructions and running
all others natively on the hardware. Clearly the privileged instructions them-
selves need to be emulated, so that when an operating system running in a
virtual machine attempts to, say, set the timer interrupt, it actually sets a
virtual timer interrupt. Such a VMM, where only privileged instructions need
to be emulated, is the most efficient native VMM possible, as formally proved
in [45].

However, in reality it is not always possible to achieve this level of effi-
ciency. There are some instruction sets (including the popular Intel 1A-32,
better known as x86) where some non-privileged instructions behave differ-
ently depending on whether they are called in user mode or system mode. Such
instruction sets implicitly assume that there will be only one operating system
(or equivalent) program that needs access to privileged instructions, a natural
assumption in the absence of virtualization. However, such instructions pose
a problem for virtual machines, in which the operating system is actually
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running in user mode rather than system mode. Thus, it is necessary for the
VMM to also emulate such instructions in addition to all privileged instruc-
tions. Newer editions of the x86 family have begun to include ‘hardware
support’ for virtualization, where such anomalous behavior can be recti-
fied by exploiting additional hardware features, resulting in a more efficient
implementation of virtualization: For example, Intel's VT-x (‘Vanderpool’)
technology includes a new VMX mode of operation. When VMX is enabled
there is a new ‘root’ mode of operation exclusively for use by the VMM, in
non-root mode all standard modes of operation are available for the OS and
applications, including a ‘system’ mode which is at a lower level of privilege
than what the VMM enjoys. We do not discuss system virtual machines in
more detail here, as the purpose of this discussion was to give some insight
into the issues that are involved through a few examples; a detailed treatment
can be found in [58].

8.1.2 Virtual machines and elastic computing

We have seen how virtual machine technology enables decoupling physical
hardware from the virtual machines that run on them. Virtual machines can
have different instruction sets from the physical hardware if needed. Even if
the instruction sets are the same (which is needed for efficiency), the size and
number of the physical resources seen by each virtual machine need not be
the same as that of the physical machine, and in fact will usually be different.
The VMM partitions the actual physical resources in time, such as with /O
and network devices, or space, as with storage and memory. In the case of
multiple CPUs, compute power can also be partitioned in time (using tradi-
tional time slices), or in space, in which case each CPU is reserved for a subset
of virtual machines.

The term ‘elastic computing’ has become popular when discussing cloud
computing. The Amazon ‘elastic’ cloud computing platform makes extensive
use of virtualization based on the Xen hypervisor. Reserving and booting
a server instance on the Amazon EC cloud provisions and starts a virtual
machine on one of Amazon’s servers. The configuration of the required virtual
machine can be chosen from a set of options (see Chapter 5). The user of
the ‘virtual instance’ is unaware and oblivious to which physical server the
instance has been booted on, as well as the resource characteristics of the
physical machine.

An ‘elastic’ multi-server environment is one which is completely virtual-
ized, with all hardware resources running under a set of cooperating virtual
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machine monitors and in which provisioning of virtual machines is largely
automated and can be dynamically controlled according to demand. In gen-
eral, any multi-server environment can be made ‘elastic’ using virtualization
in much the same manner as has been done in Amazon’s cloud, and this is
what many enterprise virtualization projects attempt to do. The key success
factors in achieving such elasticity is the degree of automation that can be
achieved across multiple VMMs working together to maximize utilization.
The scale of such operations is also important, which in the case of Amazon’s
cloud runs into tens of thousands of servers, if not more. The larger the scale,
the greater the potential for amortizing demand effciently across the available
capacity while also giving users an illusion of ‘infinite’ computing resources.

Technology to achieve elastic computing at scale is, today, largely pro-
prietary and in the hands of the major cloud providers. Some automated
provisioning technology is available in the public domain or commercially
off the shelf (see Chapter 17), and is being used by many enterprises in their
internal data center automation efforts. Apart from many startup companies,
VMware’s VirtualCentre product suite aims to provide this capability through
its ‘VCloud’ architecture.

We shall discuss the features of an elastic data center in more detail later in
this chapter; first we cover virtual machine migration, which is a pre-requisite
for many of these capabilities.

8.1.3 Virtual machine migration

Another feature that is crucial for advanced ‘elastic’ infrastructure capabilities
is ‘in-flight’ migration of virtual machines, such as provided in VMware’s VMo-
tion product. This feature, which should also be considered a key component
for ‘elasticity,” enables a virtual machine running on one physical machine
to be suspended, its state saved and transported to or accessed from another
physical machine where it is resumes execution from exactly the same state.

Virtual machine migration has been studied in the systems research com-
munity [49] as well as in related areas such as grid computing [29]. Migrating a
virtual machine involves capturing and copying the entire state of the machine
at a snapshot in time, including processor and memory state as well as all vir-
tual hardware resources such as BIOS, devices or network MAC addresses. In
principle, this also includes the entire disk space, including system and user
directories as well as swap space used for virtual memory operating system
scheduling. Clearly, the complete state of a typical server is likely to be quite
large. In a closely networked multi-server environment, such as a cloud data
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center, one may assume that some persistent storage can be easily accessed
and mounted from different servers, such as through a storage area network
or simply networked file systems; thus a large part of the system disk, includ-
ing user directories or software can easily be transferred to the new server,
using this mechanism. Even so, the remaining state, which needs to include
swap and memory apart from other hardware states, can still be gigabytes in
size, so migrating this efficiently still requires some careful design.

Let us see how VMware’s VMotion carries out in-flight migration of a virtual
machine between physical servers: VMotion waits until the virtual machine
is found to be in a stable state, after which all changes to machine state start
getting logged. VMotion then copies the contents of memory, as well as disk-
resident data belonging to either the guest operating system or applications, to
the target server. This is the baseline copy; it is not the final copy because the
virtual machine continues to run on the original server during this process.
Next the virtual machine is suspended and the last remaining changes in
memory and state since the baseline, which were being logged, are sent to the
target server, where the final state is computed, following which the virtual
machine is activated and resumes from its last state.

8.2 VIRTUALIZATION APPLICATIONS IN ENTERPRISES

A number of enterprises are engaged in virtualization projects that aim to
gradually relocate operating systems and applications running directly on
physical machines to virtual machines. The motivation is to exploit the addi-
tional VMM layer between hardware and systems software for introducing a
number of new capabilities that can potentially ease the complexity and risk
of managing large data centers. Here we outline some of the more compelling
cases for using virtualization in large enterprises.

8.2.1 Security through virtualization

Modern data centers are all necessarily connected to the world outside via
the internet and are thereby open to malicious attacks and intrusion. A
number of techniques have been developed to secure these systems, such
as firewalls, proxy filters, tools for logging and monitoring system activity
and intrusion detection systems. Each of these security solutions can be
significantly enhanced using virtualization.

For example, many intrusion detection systems (IDS) traditionally run on
the network and operate by monitoring network traffic for suspicious behavior
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by matching against a database of known attack patterns. Alternatively, host-
based systems run within each operating system instance where the behavior
of each process is monitored to detect potentially suspicious activity such as
repeated login attempts or accessing files that are normally not needed by user
processes. Virtualization opens up the possibility of building IDS capabilities
into the VMM itself, or at least at the same layer, i.e. above the network but
below the operating system. The Livewire and Terra research projects are
examples of such an approach [24, 25], which has the advantage of enabling
greater isolation of the IDS from the monitored hosts while retaining com-
plete visibility into the host’s state. This approach also allows for complete
mediation of interactions between the host software and the underlying hard-
ware, enabling a suspect VM to be easily isolated from the rest of the data
center.

Virtualization also provides the opportunity for more complete, user-group
specific, low-level logging of system activities, which would be impossible or
very difficult if many different user groups and applications were sharing the
same operating system. This allows security incidents to be be more easily
traced, and also better diagnosed by replaying the incident on a copy of the
virtual machine.

End-user system (desktop) virtualization is another application we cover
below that also has an important security dimension. Using virtual machines
on the desktop or mobile phones allows users to combine personal usage
of these devices with more secure enterprise usage by isolating these two
worlds; so a user logs into the appropriate virtual machine (personal or enter-
prise), with both varieties possibly running simultaneously. Securing critical
enterprise data, ensuring network isolation from intrusions and protection
from viruses can be better ensured without compromising users’ activities in
their personal pursuits using the same devices. In fact some organizations
are contemplating not even considering laptops and mobile devices as cor-
porate resources; instead users can be given the flexibility to buy whatever
devices they wish and use client-side virtual machines to access enterprise
applications and data.

8.2.2 Desktop virtualization and application streaming

Large enterprises have tens if not hundreds of thousands of users, each having
a desktop and/or one or more laptops and mobile phones that are used to con-
nect to applications running in the enterprise’s data center. Managing regular
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system updates, such as for security patches or virus definitions is a major
system management task. Sophisticated tools, such as IBM’s Tivoli are used to
automate this process across a globally distributed network of users. Managing
application roll-outs across such an environment is a similarly complex task,
especially in the case of ‘fat-client’ applications such as most popular email
clients and office productivity tools, as well some transaction processing or
business intelligence applications.

Virtualization has been proposed as a possible means to improve the man-
ageability of end-user devices in such large environments. Here there have
been two different approaches. The first has been to deploy all end-client sys-
tems as virtual machines on central data centers which are then accessed by
‘remote desktop’ tools, such as Citrix Presentation Server, Windows Terminal
Services (WTS), or VNC (Virtual Network Computer). At least theoreti-
cally this is an interesting solution as it (a) eases management of updates
by ‘centralizing’ all desktops (b) allows easier recovery from crashes by sim-
ply restarting a new VM (c) enables security checks and intrusion detection
to be performed centrally and (d) with all user data being central, secures it
as well as enables better data sharing and potential reduction of redundant
storage use. However, this approach has never really become popular, pri-
marily because of the need for continuous network connectivity, which in
spite of the advances in corporate networks and public broadband penetra-
tion, is still not ubiquitous and ‘always on.” Additionally, this approach also
ignores the significant computing power available on desktops, which when
added up across an enterprise can be very costly to replicate in a central data
center.

The second approach is called ‘application streaming.’ Instead of running
applications on central virtual machines, application streaming envisages
maintaining only virtual machine images centrally. An endpoint client, such
as a desktop, runs a hypervisor that also downloads the virtual machine
image from the server and launches it on the end point client. In this man-
ner the processing power of the end point is fully exploited, a VM image
can be cached for efficiency and only incrementally updated when needed,
and finally user data, which can be large, need not be centrally maintained
but mounted from the local disk as soon as the virtual machine boots.
Such a solution is implemented, for example, in the XenApp product from
Citrix (incorporating technology from Appstream, which was acquired by
Citrix). Application streaming additionally allows the isolation of personal
and corporate spaces for security purposes as mentioned in the previous
section.
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8.2.3 Server consolidation

The most common driver for virtualization in enterprise data centers has been
to consolidate applications running on possibly tens of thousands of servers,
each significantly underutilized on the average, onto a smaller number of
more efficiently used resources. The motivation is both efficiency as well as
reducing the complexity of managing the so-called ‘server sprawl.” The ability
to run multiple virtual machines on the same physical resources is also key
to achieving the high utilizations in cloud data centers.

Here we explore some implications and limits of consolidation through a
simplified model. Suppose we wish to consolidate applications running on
m physical servers of capacity ¢ onto one physical server of capacity nc. We
assume that virtual machines are either perfectly efficient, or any inefficiency
has been built into the factor n. We focus on a few simple questions: (i)
whether the single server should have n processors (or cores), or a clock
speed n times that of each original server; (ii) how much smaller than m
(the number of physical servers) can we make n while retaining acceptable
performance; and finally (iii) what is the impact on power consumption and
whether this changes the preferred strategy.

A simple model using basic queuing theory provides some insight: A server
running at an efficiency of e can be thought of as a single server queuing system
where, for whatever reason, either light load or inefficient software, the arrival
rate of requests (instructions to be processed) is e times less than that which
can be served by the server. In queuing theory terminology, e = A/u, where
A is the arrival rate and p the service rate. We define the average ‘normalized
response time’ as the average time spent in the system T normalized by average
time between requests, 1 /1, asr = TA. (Note: response time is a good measure
of performance for transactional workloads; however it may not be the right
measure for batch processing.)

Using standard queuing theory [7] we can compute r,, the normalized
response time using m physical servers as

(8.1)

for each of the original servers. Now consider consolidating these servers into
one server with m processors, wherein the queue becomes one with m servers
working at the same rate p, servicing an arrival rate of mA. Queuing theory
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yields rp, normalized response time using one server with p processors as

Pg

T (8.2)

Iy = me +

(Here Pg is the ‘queuing probability’, which is small for light loads.!) If, on
the other hand, we have a single server that is m times faster, we once again
model it as a single server queue but with service rate mu. Since e remains
unchanged, the normalized response time in this case (1) remains the same
as 1, in (8.1).

Thus we see that for light loads, i.e., underutilized servers where ¢ < 1,
the consolidation onto a multi-processor machine versus one with faster clock
speed can result in significant degradation in performance, at least as mea-
sured by average normalized response time. For heavy loads, on the other
hand, the second term in (8.2) dominates, and response time is poor (large)
in both cases.

Now consider the case where the single server onto which we consolidate
the workload is only n times faster than the original servers. In this case we
find that the normalized response time ry, is

Fp = —— (83)
n —me
Using this we can see that it is possible to use a server far less powerful than
the aggregate of the m original servers, as long as n/m remains reasonably
large as compared to e; and if indeed n > me then the average normalized
response time degrades only linearly by the factor of n/m.

Thus we see that a simple queuing theory analysis yields some natural
limits to server consolidation using virtualization. The theoretical maximum
benefit, in terms of a reduction in number of servers, is n/m = e, at which
point the system becomes unresponsive. In practice it is possible to get fairly
close to this, i.e. if n/m = e(1+¢), then the average normalized response time
becomes 1/¢€. In effect, whatever the initial inefficiency, one can decide on
an acceptable average normalized response time and plan the consolidation
strategy accordingly.

It is instructive to bring into consideration another factor in this analysis,
namely power consumption, an issue which is becoming increasingly impor-
tant in data center management. Power consumption of chips is related to the
voltage at which a chip operates, in particular power P grows as the square of

1 The formula for computing Pg can be found in [7].
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the voltage, i.e. P oc V2. Itis also a fact that higher clock speeds require higher
voltage, with almost a linear relationship between the two. Thus, a system
that runs at a clock speed n times faster than a ‘base’ system, will consume n?
the power of the base system, whereas the n core system will consume only n
times the power. In fact this is one of the reasons for the shift to ‘multi-core’
CPUs, with systems having four to eight cores per CPU being commonplace
as of this writing, and CPUs with dozens of cores expected to be the norm in
the near future.

Revisiting our queuing model, in the case of consolidation onto an n pro-
cessor/core server, instead of one that is n times faster, we can compute the
average normalized response time, call it rp, as:

P
rp = me + —Qm : (8.4)

11— —e
n
Notice that the response time remains the same as 1y, in (8.2) for light loads,
i.e., when Pg is small. Thus the response time still degrades by a factor of m,
independent of n, as compared to the faster clock speed case (8.1). However,
in the case of heavy load, where the second term dominates, there is a marked
degradation in performance in the multi-processor case if n <« m, as compared
to the m = n case, i.e. (8.2).

Thus there is a trade off, at least theoretically, between reducing power
consumption by consolidating onto multi-processors or multi-core CPU sys-
tems, versus improved performance on systems with faster clock speeds but
at the cost of non-linear growth in power consumption per server. In practice
this trade off is less significant since there are limits on how far clock speed
can be increased, for both power as well as due to fundamental physical
constraints. Lastly, apart from consolidation, it is important to note that indi-
vidual applications implemented using multi-threaded application servers can
also exploit multi-core architectures efficiently. Therefore, both enterprise
as well as cloud data centers today rely almost exclusively on multi-core,
multi-processor systems.

8.2.4 Automating infrastructure management

An important goal of enterprise virtualization projects is to reduce data cen-
ter management costs, especially people costs through greater automation. It
is important to recognize that while virtualization technology provides the
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ability to automate many activities, actually designing and putting into place
an automation strategy is a complex exercise that needs to be planned. Fur-
ther, different levels of automation are possible, some easy to achieve through
basic server consolidation, while others are more complex, requiring more
sophisticated tools and technology as well as significant changes in operating
procedures or even the organizational structure of the infrastructure wing of
enterprise IT.

The following is a possible roadmap for automation of infrastructure man-
agement, with increasing sophistication in the use of virtualization technology
at each level:

1. Level 0 — Virtual images: Packaging standard operating environments for
different classes of application needs as virtual machines, thereby reduc-
ing the start-up time for development, testing and production deployment,
also making it easier to bring on board new projects and developers. This
approach is not only easy to get started with, but offers significant reduc-
tion in infrastructure management costs and saves precious development
time as well.

2. Level 1 — Integrated provisioning: Integrated provisioning of new vir-
tual servers along with provisioning their network and storage (SAN)
resources, so that all these can be provisioned on a chosen physical server
by an administrator through a single interface. Tools are available that
achieve some of these capabilities (such as VMware’s VirtualCenter inte-
grated suite). In the majority of enterprises such tools are currently in
the process of being explored and prototyped, with only a few enterprises
having successfully deployed this level of automation on a large scale

3. Level 2 — Elastic provisioning: Automatically deciding the physical server
on which to provision a virtual machine given its resource requirements,
available capacity and projected demand; followed by bringing up the
virtual machine without any administrator intervention; rather users
(application project managers) are able to provision virtual servers them-
selves. This is the automation level provided by Amazon EC2, for example.
As of this writing, and to our best knowledge, no large enterprise IT organi-
zation has deployed this level of automation in their internal data center at
any degree of scale, though many projects are under way, using commercial
products or the open source Eucalyptus tool (see Chapter 17).

4. Level 3 — Elastic operations: Automatically provisioning new virtual
servers or migrating running virtual servers based on the need to do
so, which is established through automatic monitoring of the state of all
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virtual physical resources, and which can arise for a number of reasons,

such as:

1. Load balancing, to improve response time of applications that either
explicitly request for, or appear to need more resources, and depending
on their business criticality.

2. Security, to quarantine a virtual machine that appears to have been
compromised or attacked.

3. Collocation, to bring virtual machines that are communicating with
each other physically closer together to improve performance.

4. Fault tolerance, to migrate applications from physical machines that
have indicated possible imminent failure or need for maintenance.

5. Fault recovery, to provision a new instance virtual machine and launch
it with the required set of applications running in order to recover from
the failure of the original instance, so as to restore the corresponding
business service as soon as possible.

While tools such as VMotion provide the underlying capability to migrate

virtual machines ‘in-flight,” as we have described in the previous section,

exploiting this capability to achieve this level of automation of opera-
tions is really the holy grail for virtualization in enterprises, or even in
infrastructure cloud platforms such as Amazon.

Virtualization projects in enterprises today are either at Level 0 or 1. Level
2 is available in Amazon EC2 in the cloud, whereas Level 3 automation has
hardly ever been achieved in totality, at least with system virtual machines.
Evenin Amazon EC2, while monitoringand auto-scaling facilitiesareavailable,
in-flight migration of virtual machinesis not available, at least as of this writing.

If, however, one considers process virtual machines, such as Google App
Engine, or efficient software-as-a-service providers, one can argue that to
a certain extent the appearance of Level 3 is provided, since an application
deployed in such a platform is essentially ‘always on,” with the user not needing
to be aware of any infrastructure management issues. Taking a process VM or
even application virtualization (i.e. Dev 2.0) route may enable enterprises to
provide pockets of services that can appear to achieve nearly Level 3 elastic
automation, whereas achieving this degree of automation at a lower level of
abstraction, such as system virtual machines is likely to be much harder to
deploy at a large scale.

Where to start? An enterprise virtualization strategy needs to systematically
plan which classes of applications should be moved to a virtual environment
as well as whether and when the progression to increasing levels of automation
should be attempted. Often the best place to start a virtualization exercise is
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within the IT organization itself, with the ‘test and dev’ environments that are
used by developers in application development projects. Developers regularly
require many of the capabilities enabled by virtualization, such as being able
to manage project-specific sets of standard operating environments, re-create
and re-start servers from a check pointed state during functional testing, or
provision servers of different capacities for performance testing. As an addi-
tional benefit, having developers experience virtualization during application
development also makes supporting applications in a virtualized production
environment much easier. Finally, exactly the same argument holds for cloud
computing as well; using a cloud data center for development is a useful first
step before considering production applications in the cloud.

8.3 PITFALLS OF VIRTUALIZATION

As our discussion so far has revealed, virtualization is critical for cloud
computing and also promises significant improvements within in-house data
centers. At the same time it is important to be aware of some of the common
pitfalls that come with virtualization:

1. Application deployments often replicate application server and database
instances to ensure fault tolerance. Elastic provisioning results in two such
replicas using virtual servers deployed on the same physical server. Thus
if the physical server fails, both instances are lost, defeating the purpose
of replication.

2. We have mentioned that virtualization provides another layer at which
intrusions can be detected and isolated, i.e., the VMM. Conversely how-
ever, if the VMM itself is attacked, multiple virtual servers are affected.
Thus some successful attacks can spread more rapidly in a virtualized
environment than otherwise.

3. If the ‘server sprawl’ that motivated the building of a virtualized data center
merely results in an equally complex ‘virtual machine sprawl,” the purpose
has not been served, rather the situation may become even worse than ear-
lier. The ease with which virtual servers and server images are provisioned
and created can easily result in such situations if one is not careful.

4. Inprinciple a VMM can partition the CPU, memory and I/O bandwidth of a
physical server across virtual servers. However, it cannot ensure that these
resourcesare madeavailable to eachvirtualserverinasynchronized manner.
Thus the fraction of hardware resources that a virtual server is actually able
to utilize may be less than what has been provisioned by the VMM.



Multi-tenant software

Applications have traditionally been developed for use by a single enterprise;
similarly enterprise software products are also developed in a manner as to be
independently deployed in the data center of each customer. The data created
and accessed by such applications usually belongs to one organization. As
we discussed earlier in Chapter 3, hosted SaaS platforms require a single
application code to run on data of multiple customers, or ‘tenants’; such
behavior is referred to as multi-tenancy. In this chapter we examine different
ways to achieve multi-tenancy in application software.

Before proceeding it is important to also note that virtualization, as dis-
cussed in the previous chapter, is also a mechanism to achieve multi-tenancy
at the system level. In a virtualized environment, each ‘tenant’ could be
assigned its own set of virtual machines. Here we examine alternatives for
implementing multi-tenancy through application software architecture rather
than at the system level using virtual machines. Thus, such multi-tenancy can
also be termed application-level virtualization. Multi-tenancy and virtualiza-
tion are both two sides of the same coin; the aim being to share resources while
isolating users from each other: hardware resources in the case of system-level
virtualization and software platforms in the case of multi-tenancy.

104
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9.1 MULTI-ENTITY SUPPORT

Long before ASPs and SaaS, large globally distributed organizations often
needed their applications to support multiple organizational units, or ‘enti-
ties, in a segregated manner. For example, consider a bank with many
branches needing to transition from separate branch specific installations
of its core banking software to a centralized deployment where the same
software would run on data from all branches. The software designed to
operate at the branch level clearly could not be used directly on data from all
branches: For example branch-level users should see data related only to their
branch and branch-wise accounting should consider transactions segregated
by branch. If there was a need to enhance the system, say by introducing a
new field, such a change would need to apply across all branches; at the same
time, sometimes branch specific extensions would need to be supported as
well. These requirements are almost exactly the same as for multi-tenancy!
In a multi-entity scenario there are also additional needs, such as where a
subset of users needed to be given access to data from all branches, or a sub-
set of branches, depending on their position in an organizational hierarchy.
Similarly, some global processing would also need to be supported, such as
inter-branch reconciliation or enterprise-level analytics, without which the
benefits of centralization of data might not be realized. Such advanced fea-
tures could be implemented using ‘data access control’ as covered later in
Section 9.4. We first focus on basic multi-entity support as it will lead us
naturally to understand how multi-tenancy can be implemented.

Figure 9.1 depicts the changes that need to be made in an application to
support basic multi-entity features, so that users only access data belong-
ing to their own units. Each database table is appended with a column
(OU_ID) which marks the organizational unit each data record belongs to.
Each database query needs to be appended with a condition that ensures that
data is filtered depending on the organizational unit of the currently logged-in
user, which itself needs to be set in a variable, such as current_user_0U,
during each transaction. An exactly similar mechanism can be used to sup-
port multi-tenancy, with OU_ID now representing the customer to whom
data records belong. Note that the application runs on a single schema con-
taining data from all organizational units; we shall refer to this as the single
schema model.

Many early implementations of SaaS products utilized the single schema
model, especially those that built their SaaS applications from scratch. One
advantage of the single schema structure is that upgrading functionality of the
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Other fields Oou_ID

North

North

North

South

South

SELECT ... FROM T WHERE OU_ID=:current_user_OU

FiGure 9.1. Multi-entity implementation

application, say by adding a field, can be done at once for all customers. At
the same time, there are disadvantages: Re-engineering an existing applica-
tion using the single schema approach entails significant re-structuring of
application code. For a complex software product, often having millions
of lines of code, this cost can be prohibitive. Further, while modifications
to the data model can be done for all customers at once, it becomes diffi-
cult to support customer specific extensions, such as custom fields, using
a single schema structure. Meta-data describing such customizations, as
well as the data in such extra fields has to be maintained separately. Fur-
ther, it remains the responsibility of the application code to interpret such
meta-data for, say, displaying and handling custom fields on the screen.
Additionally, any queries that require, say, filtering or sorting on these cus-
tom fields become very complex to handle. Some of these issues can be
seen more clearly through the example in Figure 9.2 that depicts a multi-
tenant architecture using a single schema model which also supports custom
fields:

In the single schema model of Figure 9.2, a Custom Fields table stores meta-
information and data values for all tables in the application. Mechanisms for
handling custom fields in a single schema architecture are usually variants of
this scheme. Consider a screen that is used to retrieve and update records in
the Customer table. First the record from the main table is retrieved by name,
suitably filtered by the OU attribute of the logged in user. Next, custom fields
along with their values are retrieved from the Custom Fields table, for this
particular record and the OU of the logged in user. For example, in OU 503,
there are two custom fields as displayed on the screen, but only one in OU
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Edit Customer screen

Address

Birthday

1

@ Value |:|

fetch customer (<name>, <ou>) update () fetch custom fields

@ (‘customer’, id, <ou>)

@ update ()
Customer table jisert 0 Custom Fields table
ID Name | Address | Value | OU_ID Entity Custom ou_ID KeyV | alue

100 Field

101 Customer | Hobby 503 101 Golf

102 Customer | Hobby 503 102 Tennis
Customer | Birthday 503 102 10/10/72
Customer | Risk 490 101 High

Fiure 9.2. Multi-tenancy using a single schema

490, and none otherwise. Furthermore, some records may have missing values
for these fields, so while saving the record care must be taken to appropriately
either insert or update records in the Custom Fields table.

The above example is a simple case; more complex requirements also need
to be handled, for example where a list of records is to be displayed with
the ability to sort and filter on custom fields. It should be clear from this
example that the single schema approach to multi-tenancy, while seemingly
having the advantage of being able to upgrade the data model in one shot for
all customers, has many complicating disadvantages in addition to the fact
that major re-engineering of legacy applications is needed to move to this
model.

9.2 MULTI-SCHEMA APPROACH

Instead of insisting on a single schema, it is sometimes easier to modify even
an existing application to use multiple schemas, as are supported by most
relational databases. In this model, the application computes which OU the
logged in user belongs to, and then connects to the appropriate database
schema. Such an architecture is shown in Figure 9.3
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Entity Custom Ou_ID @
Field fetch_schema (‘customer’,<ou>)
Customer | Hobby 503

Edit Customer screen

Customer | Birthday 503

Customer | Risk 490 W,L/\T Birthday
L]

Valuel |

/ @ update g}

fetch_customer (<name>,<ou>):
SQL = “USE” + <ou>

exec (SQL) ID Name | Address | Hobby | Birthday | Value
SQL = “SELECT ...”

Meta-Data

Customer table—schema 503

ID Name Address Risk Value

Customer table—schema 490

Ficure 9.3. Multi-tenancy using multiple schemas

In the multiple schema approach a separate database schema is maintained
for each customer, so each schema can implement customer-specific cus-
tomizations directly. Meta-data describing customizations to the core schema
is also maintained in a separate table, but unlike the Custom Fields table of
Figure 9.2, this is pure meta-data and does not contain field values in individ-
ual records. As a result, the application design is simpler, and in case a legacy
application needs to be re-engineered for multi-tenancy, it is likely that the
modifications will be fewer and easier to accomplish.

Consider implementing the Edit Customer screen as discussed earlier
using a multiple schema approach: The application renders the appropri-
ate fields on the screen using information from the Meta-Data table. When
making a database query, the application sets the database schema before
issuing data manipulation (i.e. SQL) statements so as to access the appro-
priate schema. Note that supporting the multiple schema model involves
incorporating elements of an interpretive architecture, very similar to the Dev
2.0 model discussed in Chapter 3, and which we shall return to in more
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detail in Chapters 12 and 14. Thus, it is natural that SaaS offerings based on
the multiple schema model are quite naturally able to morph into Dev 2.0
platforms.

We have described a rather simple implementation to illustrate the concept
of using multiple schemas for multi-tenancy. In practice, web-application
servers need to have schema names configured during deployment so that they
can maintain database connection pools to each schema. Therefore, another
level of indirection is usually required, where customer name (i.e. OU) is
mapped to the actual schema name, so that customers can be added or deleted
online without bringing the system down.

In the case of a multi-entity scenario within a single organization, the
number of users was relatively small, probably in the thousands at most.
For a SaaS application, the number of users will be orders of magnitude
larger. Thus additional factors need to be considered for a multi-tenant SaaS
deployment, such as how many applications server and database instances are
needed, and how a large set of users are efficiently and dynamically mapped to
OUs so as to be connected to the appropriate application server and database
instance.

9.3 MULTI-TENANCY USING CLOUD DATA STORES

As discussed in the previous chapter, cloud data stores exhibit non-relational
storage models. Furthermore, each of these data stores are built to be multi-
tenant from scratch since effectively a single instance of such a large-scale
distributed data store caters to multiple applications created by cloud users.
For example, each user of the Google App Engine can create a fixed number of
applications, and each of these appears to have a separate data store; however
the underlying distributed infrastructure is the same for all users of Google
App Engine, as we shall describe in more detail in Chapter 10.

Here we focus on a different problem: As a user (application developer) of
a cloud platform , how does one create one’s own multi-tenant application?
In the case of Amazon EC2 the answer is straightforward; since this is an
infrastructure cloud it gives users direct access to (virtual) servers where
one can recreate exactly the same multi-tenant architectures discussed earlier
using standard application servers and database systems.

However the situation is different using a PaaS platform such as Google’s
App Engine with its Datastore, Amazon’s SimpleDB or even Azure’s data ser-
vices. For example, a single App Engine application has one data store name
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space, or schema (so, if we create one ‘Customer’ model, then we cannot have
another by the same name in the same application). Thus, it appears at first
that we are constrained to use the inefficient single schema approach.

However, an interesting feature of the Google Datastore is that entities are
essentially schema-less. Thus, it is up to the language API provided to define
how the data store is used. In particular, the Model class in the Python API
to App Engine is object-oriented as well as dynamic. As we have seen earlier
in Chapter 5, the properties of all entities of a ‘kind’ are derived from a class-
definition inheriting from the Model class. Further, as Python is a completely
interpretive language, fresh classes can be defined at runtime, along with their
corresponding data store ‘kinds.’

Figure 9.4 shows one possible implementation of multi-tenancy using
multiple schemas with Google App Engine, in Python. Separate classes are
instantiated for each schema, at runtime. This approach is similar to simulat-
ing multiple schemas in a relational database by having table names that are
schema dependent.

A similar strategy can be used with Amazon’s SimpleDB, where domains,
which play the role of tables in relational parlance and are the equivalent of

# Normal schema definition (not used)
#Class Customer (db.Model) :

# 1ID = db.IntegerProperty ()

# Name db.StringProperty ()

# Dynamic OU specific classes for ‘Customer’

for OU in OUList:
#Gets ALL fields from meta-data
schema=fetch schema (‘'Customer’ OU)
# Create OU specific class at run-time
OUclass=type ('Customer’+0U, (db.Model,), schema)

ID Name Address Hobby | Birthday Value

Customer 503

ID Name Address Risk Value

Customer 490

Ficure 9.4. Multi-tenancy using Google Datastore
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‘kind’ in the Google Datastore, can be created dynamically from any of the
provided language APIs.

9.4 DATA ACCESS CONTROL FOR ENTERPRISE APPLICATIONS

So far we have covered the typical strategies used to achieve multi-tenancy
from the perspective of enabling a single application code base, running in
a single instance, to work with data of multiple customers, thereby bringing
down costs of management across a potentially large number of customers.

For the most part, multi-tenancy as discussed above appears to be of use
primarily in a software as a service model. There are also certain cases where
multi-tenancy can be useful within the enterprise as well. We have already
seen that supporting multiple entities, such as bank branches, is essentially
a multi-tenancy requirement. Similar needs can arise if a workgroup level
application needs to be rolled out to many independent teams, who usually
do not need to share data. Customizations of the application schema may
also be needed in such scenarios, to support variations in business processes.
Similar requirements also arise in supporting multiple legal entities each of
which could be operating in different regulatory environments.

As we mentioned earlier, in a multi-entity scenario a subset of users may
need to be given access to data from all branches, or a subset of branches,
depending on their position in an organizational unit hierarchy. More gen-
erally, access to data may need to be controlled based on the values of any
field of a table, such as high-value transactions being visible only to some
users, or special customer names being invisible without explicit permission.
Such requirements are referred to as data access control needs, which while
common, are less often handled in a reusable and generic manner. Data access
control (or DAC) is a generalization of multi-tenancy in that the latter can
often be implemented using DAC. In Figure 9.5 we illustrate how data access
control can be implemented in a generic manner within a single schema to
support fairly general rules for controlling access to records based on field
values.

Each application table, such as Customer, is augmented with an additional
field DAC_ID. The DAC Rules table lists patterns based on value ranges of
arbitrary fields using which the values of the DAC_ID in each Customer
record are filled through a batch process. Users are assigned privileges to
access records satisfying one or more such DAC rules as specified in the User
DAC Roles table. This information is expanded, via a batch process, to data



112 MULTI-TENANT SOFTWARE

User DAC Roles DAC Rules
UserlD |DAC_RULE DAC_RULE | DAC_PAT| Field | Operator | Value
100 1 1 xx1 Ou_ID | EQUAL | North
Ll L 2 X2 ou_iD |EQUAL | South
Rl 2 3 X8x Name IN Gy}
101 s 4 9xx VALUE | > 100000
103 2
% @ User @
SupID UserID UserID DAC_ID DAC_ID| Name Value ou_ID
100 —1 s 100 100 001 7 001 1000 North
100 ——> 101 101 001 / 081 H.E.... | 35000 | North
100 —1 > 102 101 081 902 150000 | South
102 <4—> 103 101 082 002 5000 South
Org \ 101 002 Customer
103 002
Using RDBMS
SELECT .. FROM CUSTOMER AS C, USER AS U, ORG AS 0Ol OUTER JOIN ORG AS 02 WHERE
01.8upID = :user AND /* currentuser
01.UserID = O2.SupID AND /* currentuser and supervisors
O2.UserID= U.UserID AND /* DAC_IDs of these users
U.DAC_ID = C.DAC_ID /*filter Customertable by these DAC_IDs

Using GQL queries on Google Datastore:

USER_LIST = fetch team_ for user(:user) /* execute self join on ORG in memory
DAC LIST = SELECT DAC_ID from USER WHERE UserID in USER_LIST

SELECT .. FROM CUSTOMER WHERE DAC_ID IN DAC_LIST

Ficure 9.5. Data access control

in the User table where there is a record for each value of DAC_ID that a user
can access. For example, the user 101 has access to three DAC rules, which
translate to five records in the User table. This calculation involves computing
the complete set of mutually exclusive and unique DAC range combinations
based on the DAC Rules and thereafter which subset of these a particular
user has access to based on the User DAC Roles information; note that this
computation is independent of the actual DAC_ID values in the Customer or
other application tables.

It is straightforward to limit access to records of the Customer table to
only those a particular user is permitted, as specified in the User table using a
join. In the illustration of Figure 9.5, we introduce an additional complication
where users are also given access to the DAC permissions of all their direct
reports, as specified in the Org table.

In a traditional relational database, SQL queries on the Customer database
can be modified to support data access control by introducing a generic join,
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including a self-join on the Org table to find all direct reports of a user,
which is then joined to the User table and the Customer table. However, in
a cloud database, such as Google Datastore or Amazon’s SimpleDB, joins are
not supported. Therefore the same functionality must be implemented in code
as shown in the figure: The self-join on Org is done in memory giving a list
of reportees, including the user; this is used as a filter to get the permissible
DAC_IDs from the User table. Finally this list is used to filter the application
query on the Customer table.

Itis important to note that when adding or modifying Customer records the
DAC_TID needs to be recomputed based on the DAC Rules; this computation
also needs to be optimized, especially if there are a large number of DAC
Rules. Adding new DAC Rules or modifying existing ones will also require
re-computation and updates to the DAC_ID values in the Customer table.
Care also needs to be taken when filling the DAC Rules table to ensure that
DAC ranges on the same field are always non-overlapping.

We thought it fit to cover data access control here, as part of our treatment
of multi-tenancy, first because these requirements are closely related, but
also to bring out the complexities of real enterprise applications even for
incorporating a generic requirement such as data access control. Beyond the
example itself the lesson to be learnt is that migrating applications to a multi-
tenancy model, especially using cloud databases, is not a trivial task.






