
Distributed Systems Fö 2/3- 1

Petru Eles, IDA, LiTH

MODELS OF DISTRIBUTED SYSTEMS

1. Architectural Models

2. Interaction Models

3. Fault Models

Distributed Systems Fö 2/3- 2

Petru Eles, IDA, LiTH

Basic Elements

• Resources in a distributed system are shared
between users. They are normally encapsulated
within one of the computers and can be accessed
from other computers by communication.

• Each resource is managed by a program, the
resource manager; it offers a communication
interface enabling the resource to be accessed by
its users.

• Resource managers can be in general modelled as
processes.
If the system is designed according to an object-
oriented methodology, resources are encapsulated
in objects.

Distributed Systems Fö 2/3- 3

Petru Eles, IDA, LiTH

Architectural Models

How are responsibilities distributed between system
components and how are these components placed?

• Client-server model

• Peer-to-peer

Variations of the above two:

• Proxy server
• Mobile code
• Mobile agents
• Network computers
• Thin clients
• Mobile devices

Distributed Systems Fö 2/3- 4

Petru Eles, IDA, LiTH

Client - Server

☞ The system is structured as a set of processes,
called servers, that offer services to the users, called
clients.

• The client-server model is usually based on a
simple request/reply protocol, implemented with
send/receive primitives or using remote procedure
calls (RPC) or remote method invocation (RMI):

- the client sends a request (invocation) message
to the server asking for some service;

- the server does the work and returns a result
(e.g. the data requested) or an error code if the
work could not be performed.

Distributed Systems Fö 2/3- 5

Petru Eles, IDA, LiTH

Client - Server (cont’d)

• A server can itself request services from other
servers; thus, in this new relation, the server itself
acts like a client.

client

client

client

server

server

request:
result:

process (object):

computer (node):

Distributed Systems Fö 2/3- 6

Petru Eles, IDA, LiTH

Peer-to-Peer

☞ All processes (objects) play similar role.

• Processes (objects) interact without particular
distinction between clients and servers.

• The pattern of communication depends on the
particular application.

• A large number of data objects are shared; any
individual computer holds only a small part of the
application database.

• Processing and communication loads for access to
objects are distributed across many computers and
access links.

• This is the most general and flexible model.

peer peer

peerpeer

Distributed Systems Fö 2/3- 7

Petru Eles, IDA, LiTH

Peer-to-Peer (cont’d)

☞ Some problems with client-server:

• Centralisation of service ⇒ poor scaling
- Limitations:

capacity of server
bandwidth of network connecting the server

☞ Peer-to-Peer tries to solve some of the above

• It distributes shared resources widely

share computing and communication loads.

☞ Problems with peer-to-peer:

• High complexity due to
- cleverly place individual objects
- retrieve the objects
- maintain potentially large number of replicas.

Distributed Systems Fö 2/3- 8

Petru Eles, IDA, LiTH

Variations of the Basic Models

☞ Client-server and peer-to-peer can be considered as
basic models.

• Several variations have been proposed, with
considering factors such as:

- multiple servers and caches
- mobile code and mobile agents
- low-cost computers at the users’ side
- mobile devices

Distributed Systems Fö 2/3- 9

Petru Eles, IDA, LiTH

Proxy Server

☞ A proxy server provides copies (replications) of
resources which are managed by other servers.

• Proxy servers are typically used as caches for web
resources. They maintain a cache of recently
visited web pages or other resources.
When a request is issued by a client, the proxy
server is first checked, if the requested object
(information item) is available there.

• Proxy servers can be located at each client, or can
be shared by several clients.

• The purpose is to increase performance and
availability, by avoiding frequent accesses to
remote servers.

client

client

proxy
server

server

server

Distributed Systems Fö 2/3- 10

Petru Eles, IDA, LiTH

Mobile Code

☞ Mobile code: code that is sent from one computer to
another and run at the destination.

Advantage: remote invocations are replaced by local ones.

Typical example: Java applets.

client server

applet code

serverclient applet

Step 1: load applet

Step 2: interact with applet

Distributed Systems Fö 2/3- 11

Petru Eles, IDA, LiTH

Mobile Agents

☞ Mobile agent: a running program that travels from
one computer to another carrying out a task on
someone’s behalf.

• A mobile agent is a complete program, code + data,
that can work (relatively) independently.

• The mobile agent can invoke local resources/data.

Typical tasks:

• Collect information
• Install/maintain software on computers
• Compare prises from various vendors bay visiting

their sites.

Attention: potential security risk (like mobile code)!

Distributed Systems Fö 2/3- 12

Petru Eles, IDA, LiTH

Network Computers

☞ Network computers do not store locally operating
system or application code. All code is loaded from
the servers and run locally on the network computer.

Advantages:
• The network computer can be simpler, with limited

capacity; it does not need even a local hard disk (if
there exists one it is used to cache data or code).

• Users can log in from any computer.
• No user effort for software management/

administration.

Network computers

Network

servers

Distributed Systems Fö 2/3- 13

Petru Eles, IDA, LiTH

Thin Clients

☞ The thin client is a further step, beyond the network
computer:

• Thin clients do not download code (operating
system or application) from the server to run it
locally. All code is run on the server, in parallel for
several clients.

• The thin client only runs the user interface!

Advantages:
• All those of network computers but the computer at

the user side is even simpler (cheaper).

☞ Strong servers are needed!

Distributed Systems Fö 2/3- 14

Petru Eles, IDA, LiTH

Mobile Devices

☞ Mobile devices are hardware, computing
components that move (together with their software)
between physical locations.

• This is opposed to software agents, which are
software components that migrate.

• Both clients and servers can be mobile (clients
more frequently).

☞ Particular problems/issues:

• Mobility transparency: clients should not be aware if
the server moves (e.g., the server keeps its Internet
address even if it moves between networks).

• Problems due to variable connectivity and
bandwidth.

• The device has to explore its environment:
- Spontaneous interoperation: associations

between devices (e.g. clients and servers) are
dynamically created and destroyed.

- Context awareness: available services are
dependent on the physical environment in
which the device is situated.

Distributed Systems Fö 2/3- 15

Petru Eles, IDA, LiTH

Interaction Models

How do we handle time? Are there time limits on process
execution, message delivery, and clock drifts?

• Synchronous distributed systems

• Asynchronous distributed systems

Distributed Systems Fö 2/3- 16

Petru Eles, IDA, LiTH

Synchronous Distributed Systems

Main features:

• Lower and upper bounds on execution time of
processes can be set.

• Transmitted messages are received within a known
bounded time.

• Drift rates between local clocks have a known
bound.

Important consequences:

1. In a synchronous distributed system there is a
notion of global physical time (with a known relative
precision depending on the drift rate).

2. Only synchronous distributed systems have a
predictable behaviour in terms of timing. Only such
systems can be used for hard real-time
applications.

3. In a synchronous distributed system it is possible
and safe to use timeouts in order to detect failures
of a process or communication link.

☞ It is difficult and costly to implement synchronous
distributed systems.

Distributed Systems Fö 2/3- 17

Petru Eles, IDA, LiTH

Asynchronous Distributed Systems

☞ Many distributed systems (including those on the
Internet) are asynchronous.

• No bound on process execution time (nothing can
be assumed about speed, load, reliability of
computers).

• No bound on message transmission delays
(nothing can be assumed about speed, load,
reliability of interconnections)

• No bounds on drift rates between local clocks.

Important consequences:

1. In an asynchronous distributed system there is no
global physical time. Reasoning can be only in
terms of logical time (see lecture on time and
state).

2. Asynchronous distributed systems are
unpredictable in terms of timing.

3. No timeouts can be used.

Distributed Systems Fö 2/3- 18

Petru Eles, IDA, LiTH

Asynchronous Distributed Systems (cont’d)

☞ Asynchronous systems are widely and successfully
used in practice.

In practice timeouts are used with asynchronous
systems for failure detection.
However, additional measures have to be applied in
order to avoid duplicated messages, duplicated
execution of operations, etc.

Distributed Systems Fö 2/3- 19

Petru Eles, IDA, LiTH

Fault Models

What kind of faults can occur and what are their effects?

• Omission faults

• Arbitrary faults

• Timing faults

☞ Faults can occur both in processes and
communication channels. The reason can be both
software and hardware faults.

☞ Fault models are needed in order to build systems
with predictable behaviour in case of faults (systems
which are fault tolerant).

☞ Of course, such a system will function according to
the predictions, only as long as the real faults behave
as defined by the “fault model”. If not

☞ These issues will be discussed in some of the
following chapters and in particular in the chapter on
“Recovery and Fault Tolerance”.

Distributed Systems Fö 2/3- 20

Petru Eles, IDA, LiTH

Omission Faults

☞ A processor or communication channel fails to
perform actions it is supposed to do.
This means that the particular action is not performed!

• We do not have an omission fault if:
- An action is delayed (regardless how long) but

finally executed.
- An action is executed with an erroneous result.

☞ With synchronous systems, omission faults can be
detected by timeouts.

• If we are sure that messages arrive, a timeout
will indicate that the sending process has
crashed. Such a system has a fail-stop
behaviour.

Distributed Systems Fö 2/3- 21

Petru Eles, IDA, LiTH

Arbitrary (Byzantine) Faults

☞ This is the most general and worst possible fault
semantics.

Intended processing steps or communications are
omitted or/and unintended ones are executed.
Results may not come at all or may come but carry
wrong values.

Timing Faults

☞ Timing faults can occur in synchronous distributed
systems, where time limits are set to process
execution, communications, and clock drifts.

A timing fault occurs if any of this time limits is
exceeded.

Distributed Systems Fö 2/3- 22

Petru Eles, IDA, LiTH

Summary

• Models can be used to provide an abstract and
simplified description of certain relevant aspects of
distributed systems.

• Architectural models define the way responsibilities
are distributed among components and how they
are placed in the system.

We have studied three architectural models:
1. Client-server model
2. Peer-to-peer
3. Several variations of the two

• Interaction models deal with how time is handled
throughout the system.

Two interaction models have been introduced:
1. Synchronous distributed systems
2. Asynchronous distributed systems

• The fault model specifies what kind of faults can
occur and what their effects are.

Fault models:
1. Omission faults
2. Arbitrary faults
3. Timing faults

Distributed Systems Fö 2/3- 23

Petru Eles, IDA, LiTH

COMMUNICATION IN DISTRIBUTED
SYSTEMS

1. Communication System: Layered Implementation

2. Network Protocol

3. Request and Reply Primitives

4. RMI and RPC

5. RMI and RPC Semantics and Failures

6. Group Communication

Distributed Systems Fö 2/3- 24

Petru Eles, IDA, LiTH

Communication Models and their Layered
Implementation

• This chapter concentrates on communication
between distributed objects by means of two
models: remote method invocation (RMI) and
remote procedure call (RPI).

• RMI, as well as RPC, are based on request and
reply primitives.

• Request and reply are implemented based on the
network protocol (e.g. TCP or UDP in case of the
Internet).

Applications & Services

RMI, RPC

Operating System&Network Protocol

Hardware: Computer&Network

Request&Reply

M
iddlew

are

dellpc
Highlight

dellpc
Highlight

Distributed Systems Fö 2/3- 25

Petru Eles, IDA, LiTH

Network Protocol

☞ Middleware and distributed applications have to be
implemented on top of a network protocol. Such a
protocol is implemented as several layers.

In case of the Internet:

• TCP (Transport Control Protocol) and UDP (User
Datagram Protocol) are both transport protocols
implemented on top of the Internet protocol (IP).

Applications & Services

TCP or UDP

Middleware

IP

lower level layers

Distributed Systems Fö 2/3- 26

Petru Eles, IDA, LiTH

Network Protocol (cont’d)

☞ TCP is a reliable protocol.
• TCP guarantees the delivery to the receiving

process of all data delivered by the sending
process, in the same order.

• TCP implements additional mechanisms on top of
IP to meet reliability guarantees.

- Sequencing:
A sequence number is attached to each
transmitted segment (packet). At the receiver
side, no segment is delivered until all lower-
numbered segments have been delivered.

- Flow control:
The sender takes care not to overwhelm the
receiver (or intermediate nodes). This is based
on periodic acknowledgements received by the
sender from the receiver.

- Retransmission and duplicate handling:
If a segment is not acknowledged within a
specified timeout, the sender retransmits it.
Based on the sequence number, the receiver is
able to detect and reject duplicates.

- Buffering:
Buffering is used to balance the flow between
sender and receiver. If the receiving buffer is
full, incoming segments are dropped. They will
not be acknowledged and the sender will
retransmit them.

- Checksum:
Each segment carries a checksum. If the
received segment doesn’t match the checksum,
it is dropped (and will be retransmitted)

Distributed Systems Fö 2/3- 27

Petru Eles, IDA, LiTH

Network Protocol (cont’d)

☞ UDP is a protocol that does not guarantee reliable
transmission.

• UDP offers no guarantee of delivery.
According to the IP, packets may be dropped
because of congestion or network error. UDP adds
no additional reliability mechanism to this.

• UDP provides a means of transmitting messages
with minimal additional costs or transmission delays
above those due to IP transmission.
Its use is restricted to applications and services that
do not require reliable delivery of messages.

• If reliable delivery is requested with UDP, reliability
mechanisms have to be implemented at the
application level.

Distributed Systems Fö 2/3- 28

Petru Eles, IDA, LiTH

Request and Reply Primitives

☞ Communication between processes and objects in a
distributed system is performed by message passing.

• In a typical scenario (e.g. client-server model) such
a communication is through request and reply
messages.

Distributed Systems Fö 2/3- 29

Petru Eles, IDA, LiTH

Request-Reply Communication in a
Client-Server Model

The system is structured as a group of processes
(objects), called servers, that deliver services to clients.

Client

Network

Request

Reply

The client:

- - - - - - - - - - - - - - - - - -
send (request) to server_reference;
receive(reply);
- - - - - - - - - - - - - - - - - -

The server:

- - - - - - - - - - - - - - - - - -
receive(request) from client-reference;
execute requested operation
send (reply) to client_reference;
- - - - - - - - - - - - - - - - - -

Server

Distributed Systems Fö 2/3- 30

Petru Eles, IDA, LiTH

Remote Method Invocation (RMI) and

Remote Procedure Call (RPC)

The goal: make, for the programmer, distributed
computing look like centralized computing.

The solution:
- Asking for a service is solved by the client

issuing a simple method invocation or procedure
call; because the server can be on a remote
machine this is a remote invocation (call).

- RMI (RPC) is transparent: the calling object
(procedure) is not aware that the called one is
executing on a different machine, and vice
versa.

Applications & Services

RMI, RPC

Operating System&Network Protocol

Hardware: Computer&Network

Request&Reply

M
iddlew

are

Distributed Systems Fö 2/3- 31

Petru Eles, IDA, LiTH

Remote Method Invocation

• The programmer is unaware of the request and
reply messages which are sent over the network
during execution of the RMI.

Network

Request

Reply

The client writes:

- - - - - - - - - - - - - - - - - -
server_id.service(values_to_server, result_arguments);
- - - - - - - - - - - - - - - - - -

The server contains the method:

public service(in type1 arg_from_client; out type2 arg_to_client)
{ - - - };

Client Server

Distributed Systems Fö 2/3- 32

Petru Eles, IDA, LiTH

C
lie

n
t

O
bj

ec
t A

P
ro

xy
fo

r
B

R
em

ot
e

re
fe

re
nc

e
m

od
ul

e
C

om
m

un
ic

at
io

n
m

od
ul

e

In
vo

ca
tio

n

A
ns

w
er

S
er

ve
r

O
bj

ec
t B

S
ke

le
to

n
fo

r
B

In
vo

ca
tio

n

A
ns

w
er

R
eq

ue
st

R
ep

ly

R
em

ot
e

re
fe

re
nc

e
m

od
ul

e
C

om
m

un
ic

at
io

n
m

od
ul

e

M
es

sa
ge

s
ov

er
 n

et
w

or
k

Im
p

le
m

en
ta

ti
o

n
 o

f
R

M
I

M
ar

sh
al

ar
gu

m
en

ts

U
nm

ar
sh

al
re

su
lts

U
nm

ar
sh

al
ar

gu
m

en
ts

M
ar

sh
al

re
su

lts

lo
ca

lr
ef

.↔
re

m
.r

ef
.

lo
ca

l r
ef

.

local ref.
local ref.

lo
ca

l r
ef

.

local ref.
local ref.

lo
ca

l r
ef

.

lo
ca

l r
ef

.

re
m

. r
ef

.

re
m

. r
ef

.

lo
ca

lr
ef

.↔
re

m
.r

ef
.

Distributed Systems Fö 2/3- 33

Petru Eles, IDA, LiTH

Implementation of RMI (cont’d)

Who are the players?

• Object A asks for a service
• Object B delivers the service

Who more?

• The proxy for object B

- If an object A holds a remote reference to a
(remote) object B, there exists a proxy object for
B on the machine which hosts A. The proxy is
created when the remote object reference is
used for the first time. For each method in B
there exists a corresponding method in the proxy.

- The proxy is the local representative of the
remote object ⇒ the remote invocation from A
to B is initially handled like a local one from A to
the proxy for B.

- At invocation, the corresponding proxy method
marshals the arguments and builds the message
to be sent, as a request, to the server.
After reception of the reply, the proxy
unmarshals the received message and sends
the results, in an answer, to the invoker.

Distributed Systems Fö 2/3- 34

Petru Eles, IDA, LiTH

Implementation of RMI (cont’d)

• The skeleton for object B

- On the server side, there exists a skeleton
object corresponding to a class, if an object of
that class can be accessed by RMI. For each
method in B there exists a corresponding
method in the skeleton.

- The skeleton receives the request message,
unmarshals it and invokes the corresponding
method in the remote object; it waits for the
result and marshals it into the message to be
sent with the reply.

- A part of the skeleton is also called dispatcher.
The dispatcher receives a request from the
communication module, identifies the invoked
method and directs the request to the
corresponding method of the skeleton.

Distributed Systems Fö 2/3- 35

Petru Eles, IDA, LiTH

Implementation of RMI (cont’d)

• Communication module

- The communication modules on the client and
server are responsible of carrying out the
exchange of messages which implement the
request/reply protocol needed to execute the
remote invocation.

- The particular messages exchanged and the
way errors are handled, depends on the RMI
semantics which is implemented (see slide 40).

• Remote reference module

- The remote reference module translates
between local and remote object references.
The correspondence between them is recorded
in a remote object table.

- Remote object references are initially obtained
by a client from a so called binder that is part of
the global name service (it is not part of the
remote reference module). Here servers
register their remote objects and clients look up
after services.

Distributed Systems Fö 2/3- 36

Petru Eles, IDA, LiTH

Implementation of RMI (cont’d)

☞ Question 1

What if the two computers use different
representation for data (integers, chars, floating
point)?

• The most elegant and flexible solution is to have a
standard representation used for all values sent
through the network; the proxy and skeleton
convert to/from this representation during
marshalling/unmarshalling.

☞ Question 2

Who generates the classes for proxy and skeleton?

• In advanced middleware systems (e.g. CORBA) the
classes for proxies and skeletons can be generated
automatically.
Given the specification of the server interface and
the standard representations, an interface compiler
can generate the classes for proxies and skeletons.

Distributed Systems Fö 2/3- 37

Petru Eles, IDA, LiTH

Implementation of RMI (cont’d)

☞ Object A and Object B belong to the application.

☞ Remote reference module and communication
module belong to the middleware.

☞ The proxy for B and the skeleton for B represent the
so called RMI software. They are situated at the
border between middleware and application and
usually can be generated automatically with help of
available tools that are delivered together with the
middleware software.

Distributed Systems Fö 2/3- 38

Petru Eles, IDA, LiTH

The History of an RMI

1. The calling sequence in the client object activates
the method in the proxy corresponding to the
invoked method in B.

2. The method in the proxy packs the arguments into
a message (marshalling) and forwards it to the
communication module.

3. Based on the remote reference obtained from the
remote reference module, the communication
module initiates the request/reply protocol over the
network.

4. The communication module on the server’s
machine receives the request. Based on the local
reference received from the remote reference
module the corresponding method in the skeleton
for B is activated.

5. The skeleton method extracts the arguments from
the received message (unmarshalling) and activates
the corresponding method in the server object B.

6. After receiving the results from B, the method in the
skeleton packs them into the message to be sent
back (marshalling) and forwards this message to
the communication module.

7. The communication module sends the reply,
through the network, to the client’s machine.

8. The communication module receives the reply and
forwards it to the corresponding method in the proxy.

9. The proxy method extracts the results from the
received message (unmarshalling) and forwards
them to the client.

Distributed Systems Fö 2/3- 39

Petru Eles, IDA, LiTH

Remote Procedure Call

Request

Reply

Client stub Sever stub

Messages over network

Remote reference
module

Communication
module

Remote reference
module

Communication
module

Marshal
arguments

Unmarsh.
results

Client

Call

Return

Server

CallUnmarsh.
arguments

Return
Marshal
results

Distributed Systems Fö 2/3- 40

Petru Eles, IDA, LiTH

RMI Semantics and Failures

• If everything works OK, RMI behaves exactly like a
local invocation. What if certain failures occur?

We consider the following classes of failures which have
to be handled by an RMI protocol:

1. Lost request message
2. Lost reply message
3. Server crash
4. Client crash

☞ We will consider an omission failure model.
This means:

- Messages are either lost or received correctly.
- Client or server processes either crash or

execute correctly. After crash the server can
possibly restart with or without loss of memory.

Distributed Systems Fö 2/3- 41

Petru Eles, IDA, LiTH

Lost Request Messages

• The communication module starts a timer when
sending the request;
if the timer expires before a reply or acknowledgment
comes back, the communication module sends the
message again.

Problem: what if the request was not truly lost (but, for
example, the server is too slow) and the server
receives it more than once?

• We have to avoid that the server executes certain
operations more than once.

• Messages have to be identified by an identifier and
copies of the same message have to be filtered out:

- If the duplicate arrives and the server has not
yet sent the reply ⇒ simply send the reply.

- If the duplicate arrives after the reply has been
sent ⇒ the reply may have been lost or it didn’t
arrive in time (see next slide).

Distributed Systems Fö 2/3- 42

Petru Eles, IDA, LiTH

Lost Reply Message

The client can not really distinguish the loss of a request
from that of a reply; it simply resends the request
because no answer has been received in the right time.
☞ If the reply really got lost, when the duplicate request

arrives at the server it already has executed the
operation once!

☞ In order to resend the reply the server may need to
reexecute the operation in order to get the result.

Danger!
• Some operations can be executed more than once

without any problem; they are called idempotent
operations ⇒ no danger with executing the
duplicate request.

• There are operations which cannot be executed
repeatedly without changing the effect (e.g.
transferring an amount of money between two
accounts) ⇒ history can be used to avoid re-
execution.

History: the history is a structure which stores a record
of reply messages that have been transmitted,
together with the message identifier and the
client which it has been sent to.

Distributed Systems Fö 2/3- 43

Petru Eles, IDA, LiTH

Conclusion with Lost Messages

☞ Based on the previous discussion ⇒ correct, exactly
once semantics (see slide 46) can be implemented in
the case of lost (request or reply) messages. If all the
measures are taken (duplicate filtering and history):

- When, finally, a reply arrives at the client, the
call has been executed correctly (exactly one
time).

- If no answer arrives at the client (e.g. because
of broken line), an operation has been executed
at most one time.

☞ However, the situation is different if we assume that
the server can crash.

Distributed Systems Fö 2/3- 44

Petru Eles, IDA, LiTH

Server Crash

a) The normal sequence:

b) The server crashes after executing the operation but
before sending the reply (as result of the crash, the
server doesn’t remember that it has executed the
operation):

c) The server crashes before executing the operation:

Server
Request

Reply

Server
Request

no Reply

Server
Request

no Reply

receive
execute
reply

receive
execute
crash

receive
crash

Distributed Systems Fö 2/3- 45

Petru Eles, IDA, LiTH

Server Crash (cont’d)

Big problem!
The client cannot distinguish between cases b and c!
However they are very different and should be handled in
a different way!

What to do if the client noticed that the server is down
(it didn’t answer to a certain large number of repeated
requests)?

Distributed Systems Fö 2/3- 46

Petru Eles, IDA, LiTH

Server Crash (cont’d)

Alternative 1: at least once semantics
• The client’s communication module sends

repeated requests and waits until the server
reboots or it is rebound to a new machine; when it
finally receives a reply, it forwards it to the client.

When the client got an answer, the RMI has been
carried out at least one time, but possibly more.

Alternative 2: at most once semantics
• The client’s communication module gives up and

immediately reports the failure to the client (e.g. by
raising an exception)

- If the client got an answer, the RMI has been
executed exactly once.

- If the client got a failure message, the RMI has
been carried out at most one time, but possibly
not at all.

Alternative 3: exactly once semantics
• This is what we would like to have (and what we

could achieve for lost messages): the RMI has
been carried out exactly one time.
However this cannot be guaranteed, in general,
for the situation of server crashes.

Distributed Systems Fö 2/3- 47

Petru Eles, IDA, LiTH

Client Crash

The client sends a request to a server and crashes
before the server replies.

The computation which is active in the server becomes
an orphan - a computation nobody is waiting for.

Problems:
• wasting of CPU time
• locked resources (files, peripherals, etc.)
• if the client reboots and repeats the RMI, confusion

can be created.

The solution is based on identification and killing the
orphans.

Distributed Systems Fö 2/3- 48

Petru Eles, IDA, LiTH

Conclusion with RMI Semantics and Failures

☞ If the problem of errors is ignored, maybe semantics
is achieved for RMI:

- the client, in general, doesn’t know if the remote
method has been executed once, several times
or not at all.

☞ If server crashes can be excluded, exactly once
semantics is possible to achieve, by using retries,
filtering out duplicates, and using history.

☞ If server crashes with loss of memory (case b on
slide 44) are considered, only at least once and at
most once semantics are achievable in the best case.

In practical applications, servers can survive crashes
without loss of memory. In such cases history can be
used and duplicates can be filtered out after restart of
the server:

• the client repeats sending requests without being in
danger operations to be executed more than one
time (this is different from alternative 2 on slide 46):

- If no answer is received after a certain amount
of tries, the client is notified and he knows that
the method has been executed at most one
time or not at all.

- If an answer is received it is forwarded to the
client who knows that the method has been
executed exactly one time.

Distributed Systems Fö 2/3- 49

Petru Eles, IDA, LiTH

Conclusion with RMI Semantics and Failures (cont’d)

☞ RMI semantics is different in different systems.
Sometimes several semantics are implemented
among which the user is allowed to select.

☞ And no hope about achieving exactly once semantics
if servers crash ?!

In practice, systems can come close to this goal. Such
are transaction-based systems with sophisticated
protocols for error recovery.

☞ More discussion in chapter on fault tolerance.

Distributed Systems Fö 2/3- 50

Petru Eles, IDA, LiTH

Group Communication

☞ The assumption with client-server communication
and RMI (RPC) is that two parties are involved: the
client and the server.

☞ Sometimes, however, communication involves
multiple processes, not only two.
A solution is to perform separate message passing
operations or RMIs to each receiver.

• With group communication a message can be sent
to multiple receivers in one operation, called
multicast.

Why do we need it?
• Special applications: interest-groups, mail-lists, etc.
• Fault tolerance based on replication: a request is

sent to several servers which all execute the same
operation (if one fails, the client still will be served).

• Locating a service or object in a distributed system:
the client sends a message to all machines but only
the one (or those) which holds the server/object
responds .

• Replicated data (for reliability or performance):
whenever the data changes, the new value has to
be multicast to all processes managing replicas.

Distributed Systems Fö 2/3- 51

Petru Eles, IDA, LiTH

Group Communication (cont’d)

Essential features:

• Atomicity (all-or-nothing property): when a
message is multicast to a group, it will either arrive
correctly at all members of the group or at none of
them.

• Ordering
- FIFO ordering: The messages from any one cli-

ent to a particular server are delivered in the or-
der sent.

- Totally-ordered multicast: when several mes-
sages are transmitted to a group the messages
reach all the members of the group in the same
order.

P7 P2

P5

P6
P3

P4
P1to all

m1

to all

m2

Either each process
receives the messages
in the order m1, m2 or
each receives them in
the order m2, m1.

Distributed Systems Fö 2/3- 52

Petru Eles, IDA, LiTH

Summary

• Middleware implements high level communication
under the form of Remote Method Invocation (RMI)
or Remote Procedure Call (RPC). They are based
on request/reply protocols which are implemented
using message passing on top of a network
protocol (like the Internet).

• Client-server is a very frequently used
communication pattern based on a request/reply
protocol; it can be implemented using send/receive
message passing primitives.

• RMI and RPC are elegant mechanisms to
implement client-server systems. Remote access is
solved like a local one.

• Basic components to implement RMI are: the proxy
object, the skeleton object, the communication
module and the remote reference module.

• An essential aspect is RMI semantics in the
presence of failures. The goal is to provide exactly
once semantics. This cannot be achieved, in
general, in the presence of server crashes.

• Client-server communication, in particular RMI,
involves exactly two parties. With group
communication a message can be sent to multiple
receivers.

• Essential features of a group communication facility
are: atomicity and ordering.

