
Range of different data types in C

Suppose you need to store an integer value which can range from zero to one million. Which is
the smallest type you can use? There is no general rule; it depends on the C compiler and target
machine. You can use the ‘MIN’ and ‘MAX’ macros in limits.h to determine which type will
work.

Each signed integer type has a pair of macros which give the smallest and largest values that it
can hold. Each unsigned integer type has one such macro, for the maximum value; the minimum
value is, of course, zero.

The values of these macros are all integer constant expressions. The ‘MAX’ and ‘MIN’ macros for
char and short int types have values of type int. The ‘MAX’ and ‘MIN’ macros for the other
types have values of the same type described by the macro—thus, ULONG_MAX has type
unsigned long int.

SCHAR_MIN

This is the minimum value that can be represented by a signed char.

SCHAR_MAX

UCHAR_MAX

These are the maximum values that can be represented by a signed char and
unsigned char, respectively.

CHAR_MIN

This is the minimum value that can be represented by a char. It’s equal to SCHAR_MIN if
char is signed, or zero otherwise.

CHAR_MAX

This is the maximum value that can be represented by a char. It’s equal to SCHAR_MAX if
char is signed, or UCHAR_MAX otherwise.

SHRT_MIN

This is the minimum value that can be represented by a signed short int. On most
machines that the GNU C Library runs on, short integers are 16-bit quantities.

SHRT_MAX

USHRT_MAX

These are the maximum values that can be represented by a signed short int and
unsigned short int, respectively.

INT_MIN

This is the minimum value that can be represented by a signed int. On most machines
that the GNU C Library runs on, an int is a 32-bit quantity.

INT_MAX

UINT_MAX

These are the maximum values that can be represented by, respectively, the type
signed int and the type unsigned int.

LONG_MIN

This is the minimum value that can be represented by a signed long int. On most
machines that the GNU C Library runs on, long integers are 32-bit quantities, the same
size as int.

LONG_MAX

ULONG_MAX

These are the maximum values that can be represented by a signed long int and
unsigned long int, respectively.

LLONG_MIN

This is the minimum value that can be represented by a signed long long int. On
most machines that the GNU C Library runs on, long long integers are 64-bit quantities.

LLONG_MAX

ULLONG_MAX

These are the maximum values that can be represented by a signed long long int and
unsigned long long int, respectively.

LONG_LONG_MIN

LONG_LONG_MAX

ULONG_LONG_MAX

These are obsolete names for LLONG_MIN, LLONG_MAX, and ULLONG_MAX. They are only
available if _GNU_SOURCE is defined (see Feature Test Macros). In GCC versions prior to
3.0, these were the only names available.

WCHAR_MAX

This is the maximum value that can be represented by a wchar_t

The header file limits.h also defines some additional constants that parameterize various
operating system and file system limits

//Program to find the range of different data types in C:

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#include <float.h>
int main(void) {
 printf("CHAR_BIT : %d\n", CHAR_BIT);
 printf("CHAR_MAX : %d\n", CHAR_MAX);
 printf("CHAR_MIN : %d\n", CHAR_MIN);
 printf("INT_MAX : %d\n", INT_MAX);
 printf("INT_MIN : %d\n", INT_MIN);

 printf("LONG_MAX : %ld\n", (long) LONG_MAX);
 printf("LONG_MIN : %ld\n", (long) LONG_MIN);
 printf("SCHAR_MAX : %d\n", SCHAR_MAX);
 printf("SCHAR_MIN : %d\n", SCHAR_MIN);
 printf("SHRT_MAX : %d\n", SHRT_MAX);
 printf("SHRT_MIN : %d\n", SHRT_MIN);
 printf("UCHAR_MAX : %d\n", UCHAR_MAX);
 printf("UINT_MAX : %u\n", (unsigned int) UINT_MAX);
 printf("ULONG_MAX : %lu\n", (unsigned long) ULONG_MAX);
 printf("USHRT_MAX : %d\n", (unsigned short) USHRT_MAX);
 printf("FLT_MAX : %g\n", (float) FLT_MAX);
 printf("FLT_MIN : %g\n", (float) FLT_MIN);
 printf("-FLT_MAX : %g\n", (float) -FLT_MAX);
 printf("-FLT_MIN : %g\n", (float) -FLT_MIN);
 printf("DBL_MAX : %g\n", (double) DBL_MAX);
 printf("DBL_MIN : %g\n", (double) DBL_MIN);
 printf("-DBL_MAX : %g\n", (double) -DBL_MAX);
 return (0);
}

Analysis for auto increment and decrement operator:

Int x=2, y;
y= ++x + ++x + ++x;
printf("\n%d %d",y,x); // o/p 13,5
decomposing the calculation:
Y= (x=1+x) + (x=1+x) + ++x
= (x=3)+(x=3+1=4)+ ++x
= (x=4) + (x=4) + ++x
= 8+ (x=1+x)
= 8+ (x=1+4=5)
= 8+5=13 (y=13,x=5)

Int x=2, y;
y= ++x + x++ + x--;
=(x=1+x=1+2=3) + (x=(x+1) + x--
= (x=3)+x=(3)+1 + x--
=6+ (x=x-1) +1
=6+(x=3)// +1 -1
=9 (y=9,x=3)

Int x=2, y;
y= ++x + x++ + --x + x--;
=(x=1+x) + (x=x+1) + --x + x--;
= (x=3)+(x=3 //+1) + --x + x--;
= 6 + (x=-1+x=-1+4) + x-- //+1
=(6+x=2)=8 + (x=2//-1) //+1
= 8 + 2 //+1-1
=10 (y=10,x=2)

Int x=2,y;
y=++x + x-- + ++x + x++;
=(x=1+x) + (x=x-1) + ++x + x++
= (x=3)+(x=3)+ ++x + x++ //-1
=6+(x=1+x=4) + (x=x+1)
=6+4 + (x=4) //-1+1
=10+4 //-1+1
=14 (y=14,x=4)

Int x=2,y;
x=++x + x-- + ++x ;
= (x=1+x) + (x=x-1) + ++x
= (x=3)+(x=3) + ++x //-1
=6+(x=1+x) //-1
=6+x=4 //-1

Int x=2,y
x=++x + x++ + x++ + --x;
= (x=1+x) + (x=x+1) + x++ + --x
= (x=3) + (x=3//+1) + (x=x+1) + --x
= (3+3=6) + (x=3//+1) + --x //+1
=(6+3=9) + (x=-1+x) //+1+1

=10 -1 =9 (x=9)

=9+(x=-1+3=2) //+2
=(x= 11) //+2
=13 (x=13)

Int x=2,y
y=++x + x++ + x++ + --x;
= (x=1+x) + (x=x+1) + x++ + --x
= (x=3) + (x=3//+1) + (x=x+1) + --x
= (3+3=6) + (x=3//+1) + --x //+1
=(6+3=9) + (x=-1+x) //+1+1
=9+(x=-1+3=2) //+2
=(y= 11) //+2
(y=11,x=4)

int x=2, y;
y = x++ + ++-x + x-- + -x ;
 = (x=x+1) + (x=1+x) + x-- + -x
= (x=2) + (x=3) + (x=x-1) + -x //+1
= (3+3=6) + (x=3) + -x //+1 -1
=9 + -3 //+1-1
Y=6, x=3

